Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic stimulants called 'bath salts' act in the brain like cocaine

24.07.2012
The use of the synthetic stimulants collectively known as "bath salts" have gained popularity among recreational drug users over the last five years, largely because they were readily available and unrestricted via the Internet and at convenience stores, and were virtually unregulated.

Recent studies point to compulsive drug taking among bath salts users, and several deaths have been blamed on the bath salt mephedrone (4-methylmethcathinone or "meow-meow"). This has led several countries to ban the production, possession, and sale of mephedrone and other cathinone derivative drugs.

In October 2011, the U.S. Drug Enforcement Administration placed mephedrone on Schedule 1 of the Controlled Substances Act for one year, pending further study. "Basically, the DEA was saying we don't know enough about these drugs to know how potentially dangerous they could be, so we're going to make them maximally restricted, gather more data, and then come to a more reasoned decision as to how we should classify these compounds," said C.J. Malanga, MD, PhD, associate professor of neurology, pediatrics and psychology at the University of North Carolina School of Medicine. He is also a member of the UNC's Bowles Center for Alcohol Studies.

Now, results of a new study led by Malanga offer compelling evidence for the first time that mephedrone, like cocaine, does have potential for abuse and addiction. "The effects of mephedrone on the brain's reward circuits are comparable to similar doses of cocaine," he said. "As expected our research shows that mephedrone likely has significant abuse liability."

A report of the study was published online on June 21, 2012 by the journal Behavioural Brain Research. The report's first author and MD/PhD student at UNC J. Elliott Robinson points out that mephedrone and other potentially addictive stimulants "inappropriately activate brain reward circuits that are involved in positive reinforcement. These play a role in the drug 'high' and compulsive drug taking."

The study of laboratory mice used intracranial self-stimulation (ICSS), a technique developed in the 1950s that can measure a drug's ability to activate reward circuits. In ICSS studies, animals are trained to perform a behavioral task (pressing a lever or a button with their nose or, as in this study, spinning a wheel) to receive a reward: direct stimulation of the brain pathways involved in reward perception.

During the study, adult animals were implanted with brain stimulating electrodes. Measures of their wheel spinning effort were made before, during and after they received various doses of either mephedrone or cocaine.

"One of the unique features of ICSS is that all drugs of abuse, regardless of how they work pharmacologically, do very similar things to ICSS: they make ICSS more rewarding," Malanga said. "Animals work harder to get less of it [ICSS] when we give them these drugs."

Indeed, as was expected, cocaine increased the ability of mice to be rewarded by self-stimulation. "And what we found, which is new, is that mephedrone does the same thing. It increases the rewarding potency of ICSS just like cocaine does. "

Malanga said the study supports the idea that mephedrone and drugs like it may have significant addiction potential, "and justifies the recent legislation to maintain maximum restriction to their access by the Food and Drug Administration." On July 9 President Obama signed into law legislation passed by Congress to permanently ban the sale of bath salts in the U.S.

Along with Malanga and Robinson, other UNC co-authors are Abigail E. Agoglia, Eric W. Fish, and Michael E. Krouse.

Support for the research comes from the National Institute on Alcohol Abuse and Alcoholism and the National Institute on Drug Abuse, which are components of the National Institutes of Health.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: Administration Alcohol consumption ICSS Malanga UNC synthetic biology

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>