Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic mRNA can induce self-repair and regeneration of the infarcted heart

09.09.2013
A team of scientists at Karolinska Institutet and Harvard University has taken a major step towards treatment for heart attack, by instructing the injured heart in mice to heal by expressing a factor that triggers cardiovascular regeneration driven by native heart stem cells.

The study, published in Nature Biotechnology, also shows that there was an effect on driving the formation of a small number of new cardiac muscle cells.

"This is the beginning of using the heart as a factory to produce growth factors for specific families of cardiovascular stem cells, and suggests that it may be possible to generate new heart parts without delivering any new cells to the heart itself ", says Kenneth Chien, a Professor at the medical university Karolinska Institutet in Sweden and Harvard University, US, who led the research team behind the new findings.

The study is based upon another recent discovery in the Chien lab, which was published in Cell Research. This study shows that VEGFA, a known growth factor for vascular endothelial cells in the adult heart, can also serve as a switch that converts heart stem cells away from becoming cardiac muscle and towards the formation of the coronary vessels in the fetal heart. To coax the heart to make the VEGFA, the investigators in the Nature Biotechnology study used new technology where synthetic messenger RNA (mRNA) that encodes VEGFA is injected into the muscle cell. Then, heart muscle produces a short pulse of VEGFA. The mRNA is synthetically modified so that it escapes the normal defense system of the body that is known to reject and degrade the non-modified mRNA as a viral invader.

The study, performed in mice, shows that only a single administration of a short pulse of expression of VEGFA is required, if it can be delivered to the exact region where the heart progenitors reside. The therapeutic effect is long term, as shown by markedly improved survival following myocardial infarction with a single administration of the synthetic mRNA when given within 48 hours after the heart attack. The long-term effect appears to be based on changing the fate of the native heart stem cells from contributing to cardiac fibrotic scar tissue and towards cardiovascular tissue.

"This moves us very close to clinical studies to regenerate cardiovascular tissue with a single chemical agent without the need for injecting any additional cells into the heart." says Professor Chien.

At the same time, he points out that these are still early days and there remains much to be done. In particular, it will become of interest to engineer new device technology to deliver the synthetic mRNA via conventional catheter technology. It also will be critical to move these studies, which are based in mouse models, to other animals, which is currently in progress.

The platform technology is being developed for clinical use by the company Moderna Therapeutics, which was co-founded by Kenneth Chien. A recently announced collaboration with AstraZeneca will support moving the synthetic modified mRNA therapeutics for regenerative cardiology into the clinical setting. This work was also funded with grants from the US National Institutes of Health and The Croucher Foundation, amongst others.

Publication: 'Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction', Lior Zangi, Kathy O Lui, Alexander von Gise, Qing Ma, Wataru Ebina, Leon M Ptaszek, Daniela Später, Huansheng Xu, Mohammadsharif Tabebordbar, Rostic Gorbatov, Brena Sena, Matthias Nahrendorf, David M Briscoe, Ronald A Li, Amy J Wagers, Derrick J Rossi, William T Pu & Kenneth R Chien, Nature Biotechnology, online 8 September 2013, DOI: 10.1038/nbt.2682.

Journal website: http://www.nature.com/nbt

To download images and contact the Press Office: ki.se/pressroom

Karolinska Institutet -- a medical university: ki.se/english

Katarina Sternudd | EurekAlert!
Further information:
http://www.ki.se

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>