Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In-sync brain waves hold memory of objects just seen

05.11.2012
Brain's code for visual working memory deciphered in monkeys -- NIH-funded study

The brain holds in mind what has just been seen by synchronizing brain waves in a working memory circuit, an animal study supported by the National Institutes of Health suggests. The more in-sync such electrical signals of neurons were in two key hubs of the circuit, the more those cells held the short-term memory of a just-seen object.

Charles Gray, Ph.D., of Montana State University, Bozeman, a grantee of NIH's National Institute of Mental Health (NIMH), and colleagues, report their findings Nov. 1, 2012, online, in the journal Science Express.

"This work demonstrates, for the first time, that there is information about short term memories reflected in in-sync brainwaves," explained Gray.

"The Holy Grail of neuroscience has been to understand how and where information is encoded in the brain. This study provides more evidence that large scale electrical oscillations across distant brain regions may carry information for visual memories," said NIMH director Thomas R. Insel, M.D.

Prior to the study, scientists had observed synchronous patterns of electrical activity between the two circuit hubs after a monkey saw an object, but weren't sure if the signals actually represent such short-term visual memories in the brain. Rather, it was thought that such neural oscillations might play the role of a traffic cop, directing information along brain highways.

To find out more, Gray, Rodrigo Salazar Ph.D., and Nick Dotson of Montana State and Steven Bressler, Ph.D., at Florida Atlantic University, Boca Raton, recorded electrical signals from groups of neurons in both hubs of two monkeys performing a visual working memory task. To earn a reward, the monkeys had to remember an object – or its location – that they saw momentarily on a computer screen and correctly match it. The researchers expected to see the telltale boost in synchrony during a delay period immediately after an object disappeared from the screen, when the monkey had to hold information briefly in mind.

The degree of synchronous activity, or coherence, between cells in the areas was plotted for different objects the monkeys saw.

Brain waves of many neurons in the two hubs, called the prefrontal cortex and posterior parietal cortex, synchronized to varying degrees – depending on an object's identity (see picture below). This and other evidence indicated that neurons in these hubs are selective for particular features in the visual field and that synchronization in the circuit carries content-specific information that might contribute to visual working memory.

The researchers also determined that the parietal cortex was more influential than the prefrontal cortex in driving this process. Previously, many researchers had thought that the firing rate of single neurons in the prefrontal cortex, the brain's executive, is the major player in working memory.

Since synchronized oscillations between populations of cells distinguished between visual stimuli, it's theoretically possible to determine the correct answers for the matching tasks the monkeys performed simply by reading their brain waves. Similarly, synchrony between cell populations in the two hubs also distinguished between locations. So the location of visual information, like object identity, also appears to be represented by synchronous brain waves. Again, researchers previously thought that these functions had mostly to do with the firing rates of neurons.

So the new findings may upturn prevailing theory.

In addition to NIMH, the research was also supported by the NIH's National Institute on Neurological Disorders and Stroke (NINDS).

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>