Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why symptoms of schizophrenia emerge in young adulthood

26.02.2010
Brain differences caused by known schizophrenia gene may explain late development of classic symptoms

In reports of two new studies, researchers led by Johns Hopkins say they have identified the mechanisms rooted in two anatomical brain abnormalities that may explain the onset of schizophrenia and the reason symptoms don't develop until young adulthood.

Both types of anatomical glitches are influenced by a gene known as DISC1, whose mutant form was first identified in a Scottish family with a strong history of schizophrenia and related mental disorders. The findings could lead to new ways to treat, prevent or modify the disorder or its symptoms.

In one of the studies, published in the March issue of Nature Neuroscience, researchers examined DISC1's role in forming connections between nerve cells. Numerous studies have suggested that schizophrenia results from abnormal connectivity. The fact that symptoms typically arise soon after adolescence, a time of massive reorganization of connections between nerve cells, supports this idea.

The scientists began their study by surveying rat nerve cells to see where DISC1 was most active. Unsurprisingly, they found the highest DISC1 activity in connections between nerve cells. To determine what DISC1 was doing in this location, the researchers used a technique called RNA interference to partially shut off DISC1 activity. Consequently, they saw a transient increase and eventual reduction in size and number of dendritic spines, spikes on nerve cells' branch-like extensions that receive input from other nerve cells.

To determine how DISC1 regulates dendritic spine formation, the researchers studied which brain proteins interact with the protein expressed by the DISC1 gene. They identified one, called Kal-7, which earlier studies suggested is critical for proper dendritic spine formation. Further experiments suggested that the DISC1 protein acts as temporary holding place for Kal-7, binding it until it can be released to trigger a molecular cascade that results in dendritic spine formation.

Study leader Akira Sawa, M.D., Ph.D., professor of psychiatry and director of the program in molecular psychiatry at the Johns Hopkins University School of Medicine, says it is becoming clear that having a defective DISC1 gene might lead to an abnormally small number and size of dendritic spines, which could lead nerve cells to maintain weaker connections with unusually low numbers of neighboring neurons. Such abnormal connectivity has long been seen in autopsied brains from schizophrenia patients.

"Connections between neurons are constantly being made and broken throughout life, with a massive amount of broken connections, or 'pruning,' happening in adolescence," Sawa says. "If this pruning doesn't happen correctly, it may be one reason for the pathogenesis of schizophrenia," he adds.

In the second study, published in the Feb. 25 issue of Neuron, Sawa's team generated a new animal model of schizophrenia by temporarily shutting off the DISC1 gene in mice in the prefrontal cortex, a brain area known to differ in schizophrenic people. The new model allowed them to study other roles for DISC1 in the brain.

The researchers created their novel model by, again, using RNA interference. They injected short pieces of the nucleic acid RNA engineered to shut off the DISC1 gene into cavities in the developing brains of mouse fetuses two weeks after conception. Tests showed that these snippets of RNA migrated into cells in the prefrontal cortex, part of the brain located near the forehead.

This shutoff was temporary, with the gene's function fully restored within three weeks, or about a couple of weeks after birth. At various times after the gene was reactivated, the scientists examined the animals' brains and behavior, looking for differences from normal mice.

Sawa's team found that in the DISC1 shutoff group, nerve cells in the prefrontal cortex that produce dopamine, one of the chemical signals that nerve cells use to communicate, were markedly immature as the animals entered adolescence. Furthermore, the animals showed signs of a deficit of interneurons, nerve cells that connect other neurons in neural pathways.

They also found several behavioral differences between these mice compared to normal mice as the animals entered adolescence. For example, those in the shutoff group reacted more strongly to stimulants, displaying more locomotion than normal mice. Interestingly, these effects were somewhat mitigated when the researchers gave the animals clozapine, a drug used to treat schizophrenia.

Taken together, Sawa says, results of both studies suggest that these anatomical differences, which seem to be influenced by the DISC1 gene, cause problems that start before birth but surface only in young adulthood.

"If we can learn more about the cascade of events that lead to these anatomical differences, we may eventually be able to alter the course of schizophrenia. During adolescence, we may be able to intervene to prevent or lessen symptoms," Sawa says.

Other Johns Hopkins researchers who participated in the Nature Neuroscience study include Akiko Hayashi-Takagi, Manabu Takaki, Saurav Seshadri, Yuichi Makino, Anupamaa J. Seshadri, Koko Ishizuka, Jay M. Baraban, and Atsushi Kamiya. Other Johns Hopkins researchers who participated in the Neuron study include Minae Niwa, Atsushi Kamiya, Hanna Jaaro-Peled, Saurav Seshadri, Hideki Hiyama, and Beverly Huang.

For more information, go to:
http://neuroscience.jhu.edu/AkiraSawa.php
http://www.hopkinsmedicine.org/psychiatry/research/sawalab/

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>