Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Swine flu: Early findings about pandemic potential reported in new study

Early findings about the emerging pandemic of a new strain of influenza A (H1N1) in Mexico are published today in Science.

Researchers from the MRC Centre for Outbreak Analysis and Modelling at Imperial College London, working in collaboration with the World Health Organisation and public health agencies in Mexico, have assessed the epidemic using data to the end of April. Their key findings are as follows:

The data so far is very consistent with what researchers would expect to find in the early stages of a pandemic.

The researchers' best estimate is that in Mexico, influenza A (H1N1) is fatal in around 4 in 1,000 cases, which would make this strain of influenza as lethal as the one found in the 1957 pandemic. The researchers stress that healthcare has greatly improved in most countries since 1957 and the world is now better prepared.

The epidemic of influenza A (H1N1) is thought to have started in Mexico on 15 February 2009. The data suggests that by the end of April, around 23,000 people were infected with the virus in Mexico and 91 of these died as a result of infection. However, the figures are uncertain – for example, some mild cases may have gone unreported. The numbers infected could be as low as 6,000 people or as high as 32,000 people.

The uncertainty around the numbers of people who have been infected with influenza A (H1N1) in Mexico means that the case fatality ratio (CFR) of 0.4% (4 deaths per 1000) cannot be definitely established. The CFR is in the range of 0.3% to 1.5%, but at this stage the researchers believe that 0.4% is the most likely.

For every person infected, it is likely that there will be between 1.2 and 1.6 secondary cases. This is high compared to normal seasonal influenza, where around 10-15 percent of the population are likely to become infected. However, it is lower than would be expected for pandemic influenza, where 20-30 percent of the population are likely to become infected.

In an outbreak in an isolated village called La Gloria, Mexico, children were twice as likely to become infected as adults, with 61% of those aged under 15 becoming infected, compared with 29% of those over 15. This may suggest that adults have some degree of immunity against infection, because of having been previously infected with a related strain of influenza, or it may mean that children are more susceptible to infection because they interact much more closely together, for example in school, than adults.

Professor Neil Ferguson, the corresponding author of today's research from the MRC Centre for Outbreak Analysis and Modelling at Imperial College London, said: "Our study shows that this virus is spreading just as we would expect for the early stages of a flu pandemic. So far, it has been following a very similar pattern to the flu pandemic in 1957, in terms of the proportion of people who are becoming infected and the percentage of potentially fatal cases that we are seeing.

"What we're seeing is not the same as seasonal flu and there is still cause for concern – we would expect this pandemic to at least double the burden on our healthcare systems. However, this initial modelling suggests that the H1N1 virus is not as easily transmitted or as lethal as that found in the flu pandemic in 1918," added Professor Ferguson.

Lucy Goodchild | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>