Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swine flu: Early findings about pandemic potential reported in new study

13.05.2009
Early findings about the emerging pandemic of a new strain of influenza A (H1N1) in Mexico are published today in Science.

Researchers from the MRC Centre for Outbreak Analysis and Modelling at Imperial College London, working in collaboration with the World Health Organisation and public health agencies in Mexico, have assessed the epidemic using data to the end of April. Their key findings are as follows:

The data so far is very consistent with what researchers would expect to find in the early stages of a pandemic.

The researchers' best estimate is that in Mexico, influenza A (H1N1) is fatal in around 4 in 1,000 cases, which would make this strain of influenza as lethal as the one found in the 1957 pandemic. The researchers stress that healthcare has greatly improved in most countries since 1957 and the world is now better prepared.

The epidemic of influenza A (H1N1) is thought to have started in Mexico on 15 February 2009. The data suggests that by the end of April, around 23,000 people were infected with the virus in Mexico and 91 of these died as a result of infection. However, the figures are uncertain – for example, some mild cases may have gone unreported. The numbers infected could be as low as 6,000 people or as high as 32,000 people.

The uncertainty around the numbers of people who have been infected with influenza A (H1N1) in Mexico means that the case fatality ratio (CFR) of 0.4% (4 deaths per 1000) cannot be definitely established. The CFR is in the range of 0.3% to 1.5%, but at this stage the researchers believe that 0.4% is the most likely.

For every person infected, it is likely that there will be between 1.2 and 1.6 secondary cases. This is high compared to normal seasonal influenza, where around 10-15 percent of the population are likely to become infected. However, it is lower than would be expected for pandemic influenza, where 20-30 percent of the population are likely to become infected.

In an outbreak in an isolated village called La Gloria, Mexico, children were twice as likely to become infected as adults, with 61% of those aged under 15 becoming infected, compared with 29% of those over 15. This may suggest that adults have some degree of immunity against infection, because of having been previously infected with a related strain of influenza, or it may mean that children are more susceptible to infection because they interact much more closely together, for example in school, than adults.

Professor Neil Ferguson, the corresponding author of today's research from the MRC Centre for Outbreak Analysis and Modelling at Imperial College London, said: "Our study shows that this virus is spreading just as we would expect for the early stages of a flu pandemic. So far, it has been following a very similar pattern to the flu pandemic in 1957, in terms of the proportion of people who are becoming infected and the percentage of potentially fatal cases that we are seeing.

"What we're seeing is not the same as seasonal flu and there is still cause for concern – we would expect this pandemic to at least double the burden on our healthcare systems. However, this initial modelling suggests that the H1N1 virus is not as easily transmitted or as lethal as that found in the flu pandemic in 1918," added Professor Ferguson.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>