Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UN sustainable energy initiative could put world on a path to climate targets

25.02.2013
The new study in Nature Climate Change shows that reaching the 3 energy-related objectives proposed by the United Nations in their Sustainable Energy for All (SE4All) initiative, launched in 2011, would reduce emissions of greenhouse gases that contribute to climate change and, in combination with other measures, could help keep global temperature rise from exceeding the internationally agreed target level of 2°C.

"Achievement of the 3 objectives would provide an important entry point into stringent climate protection," says Joeri Rogelj, ETH Zurich researcher and IIASA-affiliated scientist, who led the study. The study found that the short-term objectives, which aim for 2030, would help achieve long-term climate targets.

However, to ensure achievement of stringent climate objectives, SE4ALL would need to be complemented by other measures, the researchers say. The SE4All objectives include providing universal access to modern energy, doubling the share of renewable energy globally, and doubling the rate of improvement in energy efficiency—all by 2030. While the SE4All objectives do not explicitly address climate change, it is clear that sustainable energy is a prerequisite for reducing greenhouse gas emissions: 80% of human carbon dioxide emissions come from the global energy system, including transportation, buildings, industry, and electricity, heat, and fuel production.

"Doing energy right will promote the Millennium Development Goals, such as poverty eradication and social empowerment, and at the same time kick-start the transition to a lower-carbon economy," says IIASA researcher David McCollum, who also worked on the study. "But the UN's objectives must be complemented by a global agreement on controlling greenhouse gas emissions."

While the UN energy objectives are formulated as global goals, the researchers also note that regional and national actions will be vital to achieving them. IIASA Energy program leader Keywan Riahi and study co-author says, "The next step for this initiative is already underway, with a large number of national plans that underpin the global objectives."

The researchers carried out an analysis to determine how likely we would be to limit climate warming to target levels if each or all of the SE4All objectives were achieved. Using a broad range of scenarios, the researchers found that if all the objectives were met, the likelihood of keeping temperature rise below 2°C would be more than 66%.¬ If only the renewable energy goal is met, chances of keeping temperatures below 2°C would range from 40 to 90%, while achieving just the energy efficiency goal would improve the chances to between 60 and 90%. But the researchers warn that the latter result depends strongly on what economic growth is assumed in the future. The researchers note that the likelihood of reaching climate targets within the scenarios depended on a variety of other factors, including future energy demand growth, economic growth, and technological innovation.

The study also found that providing universal energy access by 2030 will not hinder long-term climate goals, thanks to the marked gains in energy efficiency that will result. "Sustainable development and poverty eradication can go hand in hand with mitigating climate risks," says Rogelj.

The new work also quantified the potential costs for reaching the SE4All objectives, which would amount to increasing energy investments between 0.1 and 0.7% of global GDP. The authors' estimates account for the substantial savings in energy use and reduced fossil energy investments that would come about through the promotion of more sustainable energy technologies and lifestyles.

Note to editors
The study used an analysis framework called Integrated Assessment Modeling (IAM), which combines economic, geophysical, biological, social, and engineering science to systematically analyze possible future developments in the human-earth system from a broad perspective. In this study, the researchers used IIASA's energy model MESSAGE along with the probabilistic climate model MAGICC. More than 500 detailed scenarios were developed, building upon the recently released Global Energy Assessment.

Reference

Rogelj, J., D.L. McCollum, and K. Riahi, 2013, "The UN’s ‘Sustainable Energy for All’ initiative is compatible with a warming limit of 2 °C," Nature Climate Change, DOI: 10.1038/NCLIMATE1806.

For more information please contact:

Joeri Rogelj
Institute for Atmospheric and Climate Science, ETH Zurich
Tel: +41 44 632 82 79
Email: joeri.rogelj@env.ethz.ch
Keywan Riahi
IIASA Energy Program Leader
Tel: +43(0) 2236 807 491
Mob: +43 676 83 807 491
Email: riahi@iiasa.ac.at
David McCollum
IIASA Research Scholar, Energy Program
Tel: +43(0) 2236 807 586
Email mccollum@iiasa.ac.at
Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at
About IIASA:
IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. www.iiasa.ac.at

Katherine Leitzell | EurekAlert!
Further information:
http://www.iiasa.ac.at

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>