Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UN sustainable energy initiative could put world on a path to climate targets

25.02.2013
The new study in Nature Climate Change shows that reaching the 3 energy-related objectives proposed by the United Nations in their Sustainable Energy for All (SE4All) initiative, launched in 2011, would reduce emissions of greenhouse gases that contribute to climate change and, in combination with other measures, could help keep global temperature rise from exceeding the internationally agreed target level of 2°C.

"Achievement of the 3 objectives would provide an important entry point into stringent climate protection," says Joeri Rogelj, ETH Zurich researcher and IIASA-affiliated scientist, who led the study. The study found that the short-term objectives, which aim for 2030, would help achieve long-term climate targets.

However, to ensure achievement of stringent climate objectives, SE4ALL would need to be complemented by other measures, the researchers say. The SE4All objectives include providing universal access to modern energy, doubling the share of renewable energy globally, and doubling the rate of improvement in energy efficiency—all by 2030. While the SE4All objectives do not explicitly address climate change, it is clear that sustainable energy is a prerequisite for reducing greenhouse gas emissions: 80% of human carbon dioxide emissions come from the global energy system, including transportation, buildings, industry, and electricity, heat, and fuel production.

"Doing energy right will promote the Millennium Development Goals, such as poverty eradication and social empowerment, and at the same time kick-start the transition to a lower-carbon economy," says IIASA researcher David McCollum, who also worked on the study. "But the UN's objectives must be complemented by a global agreement on controlling greenhouse gas emissions."

While the UN energy objectives are formulated as global goals, the researchers also note that regional and national actions will be vital to achieving them. IIASA Energy program leader Keywan Riahi and study co-author says, "The next step for this initiative is already underway, with a large number of national plans that underpin the global objectives."

The researchers carried out an analysis to determine how likely we would be to limit climate warming to target levels if each or all of the SE4All objectives were achieved. Using a broad range of scenarios, the researchers found that if all the objectives were met, the likelihood of keeping temperature rise below 2°C would be more than 66%.¬ If only the renewable energy goal is met, chances of keeping temperatures below 2°C would range from 40 to 90%, while achieving just the energy efficiency goal would improve the chances to between 60 and 90%. But the researchers warn that the latter result depends strongly on what economic growth is assumed in the future. The researchers note that the likelihood of reaching climate targets within the scenarios depended on a variety of other factors, including future energy demand growth, economic growth, and technological innovation.

The study also found that providing universal energy access by 2030 will not hinder long-term climate goals, thanks to the marked gains in energy efficiency that will result. "Sustainable development and poverty eradication can go hand in hand with mitigating climate risks," says Rogelj.

The new work also quantified the potential costs for reaching the SE4All objectives, which would amount to increasing energy investments between 0.1 and 0.7% of global GDP. The authors' estimates account for the substantial savings in energy use and reduced fossil energy investments that would come about through the promotion of more sustainable energy technologies and lifestyles.

Note to editors
The study used an analysis framework called Integrated Assessment Modeling (IAM), which combines economic, geophysical, biological, social, and engineering science to systematically analyze possible future developments in the human-earth system from a broad perspective. In this study, the researchers used IIASA's energy model MESSAGE along with the probabilistic climate model MAGICC. More than 500 detailed scenarios were developed, building upon the recently released Global Energy Assessment.

Reference

Rogelj, J., D.L. McCollum, and K. Riahi, 2013, "The UN’s ‘Sustainable Energy for All’ initiative is compatible with a warming limit of 2 °C," Nature Climate Change, DOI: 10.1038/NCLIMATE1806.

For more information please contact:

Joeri Rogelj
Institute for Atmospheric and Climate Science, ETH Zurich
Tel: +41 44 632 82 79
Email: joeri.rogelj@env.ethz.ch
Keywan Riahi
IIASA Energy Program Leader
Tel: +43(0) 2236 807 491
Mob: +43 676 83 807 491
Email: riahi@iiasa.ac.at
David McCollum
IIASA Research Scholar, Energy Program
Tel: +43(0) 2236 807 586
Email mccollum@iiasa.ac.at
Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at
About IIASA:
IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. www.iiasa.ac.at

Katherine Leitzell | EurekAlert!
Further information:
http://www.iiasa.ac.at

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>