Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising results in teen study: adolescent risky behavior may signal mature brain

27.08.2009
A new study using brain imaging to study teen behavior indicates that adolescents who engage in dangerous activities have frontal white matter tracts that are more adult in form than their more conservative peers.

The brain goes through a course of maturation during adolescence and does not reach its adult form until the mid-twenties. A long-standing theory of adolescent behavior has assumed that this delayed brain maturation is the cause of impulsive and dangerous decisions in adolescence. The new study, using a new form of brain imaging, calls into question this theory.

In order to better understand the relationship between high risk-taking and the brain's development, Emory University and Emory School of Medicine neuroscientists used a form of magnetic resonance imaging (MRI) called diffusion tensor imaging (DTI) to measure structural changes in white matter in the brain. The study's findings are published in the Aug. 26, 2009 PLoS ONE.

"In the past, studies have focused on the pattern of gray matter density from childhood to early adulthood, says Gregory Berns, MD, PhD, principal investigator and professor of Psychiatry and Neuroeconomics at Emory University and director of the Center for Neuropolicy. "With new technology, we were able to develop the first study looking at how development of white matter relates to activities in the real world."

Gray matter is the part of the brain made up of neurons, while white matter connects neurons to each other. As the brain matures, white matter becomes denser and more organized. Gray matter and white matter follow different trajectories. Both are important for understanding brain function.

The study enrolled 91adolescents ages 12 through 18 over a three-year period. Levels of engagement in dangerous behaviors were measured by a survey that included questions about the teens' thrill seeking behaviors, reckless behaviors, rebellious behaviors and antisocial behaviors. DTI was used to measure corresponding structural changes in white matter.

"We were surprised to discover that risk-taking was associated with more highly-developed white matter – a more mature brain," says Berns. "We were also surprised to learn that except for slightly higher scores in risk-taking, there was no significant difference in the maturity of the white matter between males and females."

Berns suggests that doing adult-like activities requires sophisticated skills.

"Society is a lot different now than it was 100 years ago when teens were expected to go to work and raise a family," says Berns. "Now, adolescents aren't expected to act like adults until they are in their twenties, when they have finished their education and found a career.

"You could make the case that in this country, biological capacity shows up long before the wisdom that comes with time is fully developed," notes Berns.

Berns says more studies need to be done to determine if early brain development predisposes someone to engage in risky behaviors, or if the risky behavior drives the maturation of the brain.

The CDC reports that, 27,000 people between the ages of 10 and 24 die from bad decisions in the United States per year. Additionally, it has been shown that the period of mid-adolescence (ages 15 through 19) is the time when teens are more likely to begin high-risk behaviors such as drinking, abusing drugs or driving recklessly.

Other researchers who contributed to this study include, Sara Moore, BS, Department of Psychiatry and Behavioral Sciences at Emory University School of Medicine and C. Monica Capra, PhD, the Department of Economics and the Center for Neuropolicy, Emory University.

This study was funded by grants from the National Institute on Drug Abuse.

"Adolescent Engagement in Dangerous Behaviors Is Associated with Increased White Matter Maturing of Frontal Cortex", PLoS ONE, 8/26/09, 10.1371

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Emory Winship Cancer Institute; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, Emory University Orthopaedics & Spine Hospital, the jointly owned Emory-Adventist Hospital, and EHCA, a limited liability company created with Hospital Corporation of America. EHCA includes two joint venture hospitals, Emory Eastside Medical Center and Emory Johns Creek Hospital. The Woodruff Health Sciences Center has a $2.3 billion budget, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,300 students and trainees, and a $5.5 billion economic impact on metro Atlanta.

Kathi Baker | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>