Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising results in teen study: adolescent risky behavior may signal mature brain

27.08.2009
A new study using brain imaging to study teen behavior indicates that adolescents who engage in dangerous activities have frontal white matter tracts that are more adult in form than their more conservative peers.

The brain goes through a course of maturation during adolescence and does not reach its adult form until the mid-twenties. A long-standing theory of adolescent behavior has assumed that this delayed brain maturation is the cause of impulsive and dangerous decisions in adolescence. The new study, using a new form of brain imaging, calls into question this theory.

In order to better understand the relationship between high risk-taking and the brain's development, Emory University and Emory School of Medicine neuroscientists used a form of magnetic resonance imaging (MRI) called diffusion tensor imaging (DTI) to measure structural changes in white matter in the brain. The study's findings are published in the Aug. 26, 2009 PLoS ONE.

"In the past, studies have focused on the pattern of gray matter density from childhood to early adulthood, says Gregory Berns, MD, PhD, principal investigator and professor of Psychiatry and Neuroeconomics at Emory University and director of the Center for Neuropolicy. "With new technology, we were able to develop the first study looking at how development of white matter relates to activities in the real world."

Gray matter is the part of the brain made up of neurons, while white matter connects neurons to each other. As the brain matures, white matter becomes denser and more organized. Gray matter and white matter follow different trajectories. Both are important for understanding brain function.

The study enrolled 91adolescents ages 12 through 18 over a three-year period. Levels of engagement in dangerous behaviors were measured by a survey that included questions about the teens' thrill seeking behaviors, reckless behaviors, rebellious behaviors and antisocial behaviors. DTI was used to measure corresponding structural changes in white matter.

"We were surprised to discover that risk-taking was associated with more highly-developed white matter – a more mature brain," says Berns. "We were also surprised to learn that except for slightly higher scores in risk-taking, there was no significant difference in the maturity of the white matter between males and females."

Berns suggests that doing adult-like activities requires sophisticated skills.

"Society is a lot different now than it was 100 years ago when teens were expected to go to work and raise a family," says Berns. "Now, adolescents aren't expected to act like adults until they are in their twenties, when they have finished their education and found a career.

"You could make the case that in this country, biological capacity shows up long before the wisdom that comes with time is fully developed," notes Berns.

Berns says more studies need to be done to determine if early brain development predisposes someone to engage in risky behaviors, or if the risky behavior drives the maturation of the brain.

The CDC reports that, 27,000 people between the ages of 10 and 24 die from bad decisions in the United States per year. Additionally, it has been shown that the period of mid-adolescence (ages 15 through 19) is the time when teens are more likely to begin high-risk behaviors such as drinking, abusing drugs or driving recklessly.

Other researchers who contributed to this study include, Sara Moore, BS, Department of Psychiatry and Behavioral Sciences at Emory University School of Medicine and C. Monica Capra, PhD, the Department of Economics and the Center for Neuropolicy, Emory University.

This study was funded by grants from the National Institute on Drug Abuse.

"Adolescent Engagement in Dangerous Behaviors Is Associated with Increased White Matter Maturing of Frontal Cortex", PLoS ONE, 8/26/09, 10.1371

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Emory Winship Cancer Institute; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, Emory University Orthopaedics & Spine Hospital, the jointly owned Emory-Adventist Hospital, and EHCA, a limited liability company created with Hospital Corporation of America. EHCA includes two joint venture hospitals, Emory Eastside Medical Center and Emory Johns Creek Hospital. The Woodruff Health Sciences Center has a $2.3 billion budget, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,300 students and trainees, and a $5.5 billion economic impact on metro Atlanta.

Kathi Baker | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>