Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising diversity at a synapse hints at complex diversity of neural circuitry

23.02.2012
A new study reveals a dazzling degree of biological diversity in an unexpected place – a single neural connection in the body wall of flies.

The finding, reported in this week's online edition of the Proceedings of the National Academy of Sciences, raises several interesting questions about the importance of structure in the nervous system and the evolution of neural wiring.

"We know almost nothing about the evolution of the nervous system, although we know it has to happen – behaviors change, complexity changes, there is the addition of new neurons, formation of different synaptic connections," says geneticist Barry Ganetzky, the Steenbock Professor of Biological Sciences at the University of Wisconsin–Madison.

The result is even more remarkable because he and graduate student Megan Campbell found the surprising diversity in a location very familiar to scientists. Called neuromuscular junction 4 (NMJ4), it's where a single motor neuron contacts a specific muscle in the fly body wall to drive its activity.

The synapses where neurons connect with their neuronal or muscular targets are morphologically complex, resembling miniature trees decked out with tiny bulbs that are the nerve terminals, called synaptic boutons.

"Synapses are where the important information transfer and integrative functions of the nervous system occur," Ganetzky explains. "It's the fundamental place where information processing takes place, and there is an underlying belief that the structure of the synapse is key to understanding its function."

Each muscle is innervated by a different motor neuron that forms an NMJ with a shape, size, and geometry that is characteristic for that particular NMJ. Fortunately, the consistency of the fly's anatomy makes it possible to identify the exact same synapse in different individual flies, even across different species. NMJ4 is well studied in the context of synaptic development and function, and Ganetzky himself has used NMJ4 for decades to pinpoint genes with a host of biological roles from movement disorders to neurodegeneration.

The current project began with a simple musing about what really is "normal" for laboratory-bred fruit flies and their wild brethren. Looking at the NMJ4 in the common lab fruit fly, Drosophila melanogaster, Campbell found that the synaptic morphology was consistent between lab-bred and wild flies, and between strains collected in Madison, Wis., and as far away as Zimbabwe. All the flies had similar-looking arbors and boutons.

Encouraged, they decided to branch out. "Drosophila is a very rich genus – thousands of species with different behaviors, different food preferences, different environments, different climates, different sizes – with upward of 50 million years of divergence," comparable to the evolutionary separation between mice and humans, says Ganetzky.

Despite such differences, he adds, the larval body plan is exactly the same across all known Drosophila species regardless of their size, habitat, or food source. "Cell for cell, the body wall musculature and innervation patterns are identical," he says.

They began to look at NMJ4 in other Drosophila species, aided by the fly collection of UW–Madison evolutionary biologist Sean B. Carroll. When they focused on their target synapse in 21 different species of Drosophila from around the world, they expected to find some predictable patterns of modest variation.

But after looking at just a few species, Campbell says, a different story emerged: like Drosophila melanogaster, each species had a characteristic NMJ4 appearance, but that appearance varied dramatically among species. In some species, NMJ4 consisted of a few boutons arranged in a simple unbranched pattern; others had many boutons distributed over a number of long branches or numerous boutons packed into dense, tightly clustered arbors.

"The results were absolutely flabbergasting – variation far beyond anything we ever anticipated," Ganetzky says.

But the surprises didn't end there.

The striking differences in complexity did not correlate with evolutionary relatedness of the species; in other words, the NMJs of more closely related species did not look any more alike than those of more distantly related flies.

They even found distinct differences between species separated by less than one million years of evolution, species that are otherwise so similar that even fly experts struggle to distinguish them based on appearance. Such rapid evolution is remarkable, the authors say, though its biological significance isn't yet clear.

What could explain such tremendous variation? One possibility is genetic drift – the random accumulation of genetic changes that alter the appearance of the NMJ but otherwise have no effect on the organism; in essence, any NMJ that gets the job done will suffice. The alternative is that each NMJ is shaped by natural selection because its particular size and structure in some way increases survival or reproductive success for members of that species.

With help from fellow UW–Madison geneticists Bret Payseur and Beth Dumont, they used a quantitative model to analyze the different NMJ morphologies as a function of the evolutionary relationship among 11 species whose evolutionary tree is precisely known from genome sequencing. The results, Ganetzky says, indicate that the variability they observed is unlikely to be random. "What that suggests is that there is some driving force – natural selection – that is shaping the synapse to be a particular way."

Thinking that neural function would be an obvious target of selection, they measured electrical activity in the circuit. But activity recordings from four species representing the range of morphological complexity revealed the same basic neural workings no matter the synaptic structure.

The researchers say there may be subtle functional differences between the different NMJ structures, undetected by their assay but which could translate to distinct biological differences – for example, learning capacity or response to stressful conditions – that would provide a target for natural selection.

"We believe there's some reason why the variation matters, but we don't know yet what that reason is," Ganetzky says.

Meanwhile Campbell and Ganetzky are now working to understand the underlying genetic and molecular mechanisms as well as the biological significance, if any, of that naturally occurring variation.

"We think we've made an important discovery about nature that we think opens up all kinds of new doors. At this point, we've raised many, many more questions than we've answered… questions about the evolution of nervous systems, evolution of behavior, the relationship between neuronal and synaptic morphology and function," Ganetzky says. "I hope this captures the interest of scientists in many other fields to apply their own areas of expertise."

Barry Ganetzky | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>