Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising diversity at a synapse hints at complex diversity of neural circuitry

23.02.2012
A new study reveals a dazzling degree of biological diversity in an unexpected place – a single neural connection in the body wall of flies.

The finding, reported in this week's online edition of the Proceedings of the National Academy of Sciences, raises several interesting questions about the importance of structure in the nervous system and the evolution of neural wiring.

"We know almost nothing about the evolution of the nervous system, although we know it has to happen – behaviors change, complexity changes, there is the addition of new neurons, formation of different synaptic connections," says geneticist Barry Ganetzky, the Steenbock Professor of Biological Sciences at the University of Wisconsin–Madison.

The result is even more remarkable because he and graduate student Megan Campbell found the surprising diversity in a location very familiar to scientists. Called neuromuscular junction 4 (NMJ4), it's where a single motor neuron contacts a specific muscle in the fly body wall to drive its activity.

The synapses where neurons connect with their neuronal or muscular targets are morphologically complex, resembling miniature trees decked out with tiny bulbs that are the nerve terminals, called synaptic boutons.

"Synapses are where the important information transfer and integrative functions of the nervous system occur," Ganetzky explains. "It's the fundamental place where information processing takes place, and there is an underlying belief that the structure of the synapse is key to understanding its function."

Each muscle is innervated by a different motor neuron that forms an NMJ with a shape, size, and geometry that is characteristic for that particular NMJ. Fortunately, the consistency of the fly's anatomy makes it possible to identify the exact same synapse in different individual flies, even across different species. NMJ4 is well studied in the context of synaptic development and function, and Ganetzky himself has used NMJ4 for decades to pinpoint genes with a host of biological roles from movement disorders to neurodegeneration.

The current project began with a simple musing about what really is "normal" for laboratory-bred fruit flies and their wild brethren. Looking at the NMJ4 in the common lab fruit fly, Drosophila melanogaster, Campbell found that the synaptic morphology was consistent between lab-bred and wild flies, and between strains collected in Madison, Wis., and as far away as Zimbabwe. All the flies had similar-looking arbors and boutons.

Encouraged, they decided to branch out. "Drosophila is a very rich genus – thousands of species with different behaviors, different food preferences, different environments, different climates, different sizes – with upward of 50 million years of divergence," comparable to the evolutionary separation between mice and humans, says Ganetzky.

Despite such differences, he adds, the larval body plan is exactly the same across all known Drosophila species regardless of their size, habitat, or food source. "Cell for cell, the body wall musculature and innervation patterns are identical," he says.

They began to look at NMJ4 in other Drosophila species, aided by the fly collection of UW–Madison evolutionary biologist Sean B. Carroll. When they focused on their target synapse in 21 different species of Drosophila from around the world, they expected to find some predictable patterns of modest variation.

But after looking at just a few species, Campbell says, a different story emerged: like Drosophila melanogaster, each species had a characteristic NMJ4 appearance, but that appearance varied dramatically among species. In some species, NMJ4 consisted of a few boutons arranged in a simple unbranched pattern; others had many boutons distributed over a number of long branches or numerous boutons packed into dense, tightly clustered arbors.

"The results were absolutely flabbergasting – variation far beyond anything we ever anticipated," Ganetzky says.

But the surprises didn't end there.

The striking differences in complexity did not correlate with evolutionary relatedness of the species; in other words, the NMJs of more closely related species did not look any more alike than those of more distantly related flies.

They even found distinct differences between species separated by less than one million years of evolution, species that are otherwise so similar that even fly experts struggle to distinguish them based on appearance. Such rapid evolution is remarkable, the authors say, though its biological significance isn't yet clear.

What could explain such tremendous variation? One possibility is genetic drift – the random accumulation of genetic changes that alter the appearance of the NMJ but otherwise have no effect on the organism; in essence, any NMJ that gets the job done will suffice. The alternative is that each NMJ is shaped by natural selection because its particular size and structure in some way increases survival or reproductive success for members of that species.

With help from fellow UW–Madison geneticists Bret Payseur and Beth Dumont, they used a quantitative model to analyze the different NMJ morphologies as a function of the evolutionary relationship among 11 species whose evolutionary tree is precisely known from genome sequencing. The results, Ganetzky says, indicate that the variability they observed is unlikely to be random. "What that suggests is that there is some driving force – natural selection – that is shaping the synapse to be a particular way."

Thinking that neural function would be an obvious target of selection, they measured electrical activity in the circuit. But activity recordings from four species representing the range of morphological complexity revealed the same basic neural workings no matter the synaptic structure.

The researchers say there may be subtle functional differences between the different NMJ structures, undetected by their assay but which could translate to distinct biological differences – for example, learning capacity or response to stressful conditions – that would provide a target for natural selection.

"We believe there's some reason why the variation matters, but we don't know yet what that reason is," Ganetzky says.

Meanwhile Campbell and Ganetzky are now working to understand the underlying genetic and molecular mechanisms as well as the biological significance, if any, of that naturally occurring variation.

"We think we've made an important discovery about nature that we think opens up all kinds of new doors. At this point, we've raised many, many more questions than we've answered… questions about the evolution of nervous systems, evolution of behavior, the relationship between neuronal and synaptic morphology and function," Ganetzky says. "I hope this captures the interest of scientists in many other fields to apply their own areas of expertise."

Barry Ganetzky | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>