Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surgeon 'gluing' the breastbone together after open-heart surgery

16.11.2009
Technique developed at the University of Calgary

An innovative method is being used to repair the breastbone after it is intentionally broken to provide access to the heart during open-heart surgery. The technique uses a state-of-the-art adhesive that rapidly bonds to bone and accelerates the recovery process.

"We can now heal the breastbone in hours instead of weeks after open-heart surgery. Patients can make a full recovery after surgery and get back to full physical activities in days instead of months," reports Dr. Paul W.M. Fedak, MD PhD FRCSC, a cardiac surgeon at Foothills Medical Centre and scientist at the Faculty of Medicine who pioneered the new procedure.

Over 20 patients have received the new technique in Calgary as part of a pilot study. Fedak and Kathryn King, RN PhD are the co-principal investigators on the study. King, a cardiovascular nurse scientist, is an expert in post-operative recovery after open-heart surgery. "We know that recovery from sternotomy is a multi-faceted process that includes not only healing of the breastbone but the ability to return to normal activities," she says. "Being able to resume normal activities is a hallmark of a good recovery; this surgical innovation should enable that."

The patients report substantially less pain and discomfort after surgery and the use of strong pain medication, such as narcotics, is profoundly reduced if not completely eliminated with use of the procedure. The ability to deep breathe, known to play a key role in recovery, is also substantially improved.

Richard Cuming's chest was repaired in June KryptoniteTM adhesive, a biocompatible polymer (manufactured by Doctors Research Group Inc., (Connecticut USA). Two years earlier he had open-heart surgery repaired the traditional way – sewing his breastbone back together with wire. That wire broke, his breastbone opened, and Cuming had a difficult time.

"I couldn't accomplish simple tasks like squeezing toothpaste, turning the steering wheel in my car or pulling open a heavy door without discomfort and pain. Anytime I coughed or sneezed there was movement in my chest and significant pain, I think the worst part of the ordeal was that I stopped doing things 'in case they would hurt'" says Cuming.

After his chest was 'glued' back together using KryptoniteTM adhesive and wires he had an entirely different experience. "I had a little bit of pain, but this was a walk in the park compared to my earlier recovery. I can do anything I could do prior to the original surgery. I feel wonderful."

The encouraging results of this pilot study have prompted the Calgary researchers to establish a worldwide study to further investigate its benefits. The STICK Trial (STernal Innovative Closure with KryptoniteTM) aims to apply the technique in over 500 patients across the globe over the next 12 – 24 months.

"We are proud of the innovative work being done at Foothills Medical Centre," says Dr. L. Brent Mitchell, Director of the Libin Cardiovascular Institute of Alberta and Head of the Clinical Department of Cardiac Sciences at Alberta Health Services, "I used to warn my open-heart surgery patients that they would feel like they had been hit by a truck during a long recovery period; I'm glad I don't have to say that anymore."

More than one million open-heart surgeries are performed in the world each year by splitting the breastbone. Until this recent discovery, wire closure of the breastbone had been standard practice since routine heart surgery was established a half century ago.

The investigators believe that this improved method of chest closure will become a new standard of care for patients undergoing open-heart surgery. Fedak has started training surgeons in other Canadian and European hospitals where it is rapidly gaining popularity.

KryptoniteTM is approved for use in Canada (Health Canada), USA (FDA), and Europe (CE Mark). This pilot study has been supported in part by Doctor's Research Group Inc.

Jordanna Heller | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>