Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surgeon 'gluing' the breastbone together after open-heart surgery

16.11.2009
Technique developed at the University of Calgary

An innovative method is being used to repair the breastbone after it is intentionally broken to provide access to the heart during open-heart surgery. The technique uses a state-of-the-art adhesive that rapidly bonds to bone and accelerates the recovery process.

"We can now heal the breastbone in hours instead of weeks after open-heart surgery. Patients can make a full recovery after surgery and get back to full physical activities in days instead of months," reports Dr. Paul W.M. Fedak, MD PhD FRCSC, a cardiac surgeon at Foothills Medical Centre and scientist at the Faculty of Medicine who pioneered the new procedure.

Over 20 patients have received the new technique in Calgary as part of a pilot study. Fedak and Kathryn King, RN PhD are the co-principal investigators on the study. King, a cardiovascular nurse scientist, is an expert in post-operative recovery after open-heart surgery. "We know that recovery from sternotomy is a multi-faceted process that includes not only healing of the breastbone but the ability to return to normal activities," she says. "Being able to resume normal activities is a hallmark of a good recovery; this surgical innovation should enable that."

The patients report substantially less pain and discomfort after surgery and the use of strong pain medication, such as narcotics, is profoundly reduced if not completely eliminated with use of the procedure. The ability to deep breathe, known to play a key role in recovery, is also substantially improved.

Richard Cuming's chest was repaired in June KryptoniteTM adhesive, a biocompatible polymer (manufactured by Doctors Research Group Inc., (Connecticut USA). Two years earlier he had open-heart surgery repaired the traditional way – sewing his breastbone back together with wire. That wire broke, his breastbone opened, and Cuming had a difficult time.

"I couldn't accomplish simple tasks like squeezing toothpaste, turning the steering wheel in my car or pulling open a heavy door without discomfort and pain. Anytime I coughed or sneezed there was movement in my chest and significant pain, I think the worst part of the ordeal was that I stopped doing things 'in case they would hurt'" says Cuming.

After his chest was 'glued' back together using KryptoniteTM adhesive and wires he had an entirely different experience. "I had a little bit of pain, but this was a walk in the park compared to my earlier recovery. I can do anything I could do prior to the original surgery. I feel wonderful."

The encouraging results of this pilot study have prompted the Calgary researchers to establish a worldwide study to further investigate its benefits. The STICK Trial (STernal Innovative Closure with KryptoniteTM) aims to apply the technique in over 500 patients across the globe over the next 12 – 24 months.

"We are proud of the innovative work being done at Foothills Medical Centre," says Dr. L. Brent Mitchell, Director of the Libin Cardiovascular Institute of Alberta and Head of the Clinical Department of Cardiac Sciences at Alberta Health Services, "I used to warn my open-heart surgery patients that they would feel like they had been hit by a truck during a long recovery period; I'm glad I don't have to say that anymore."

More than one million open-heart surgeries are performed in the world each year by splitting the breastbone. Until this recent discovery, wire closure of the breastbone had been standard practice since routine heart surgery was established a half century ago.

The investigators believe that this improved method of chest closure will become a new standard of care for patients undergoing open-heart surgery. Fedak has started training surgeons in other Canadian and European hospitals where it is rapidly gaining popularity.

KryptoniteTM is approved for use in Canada (Health Canada), USA (FDA), and Europe (CE Mark). This pilot study has been supported in part by Doctor's Research Group Inc.

Jordanna Heller | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>