Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Surgeon 'gluing' the breastbone together after open-heart surgery

Technique developed at the University of Calgary

An innovative method is being used to repair the breastbone after it is intentionally broken to provide access to the heart during open-heart surgery. The technique uses a state-of-the-art adhesive that rapidly bonds to bone and accelerates the recovery process.

"We can now heal the breastbone in hours instead of weeks after open-heart surgery. Patients can make a full recovery after surgery and get back to full physical activities in days instead of months," reports Dr. Paul W.M. Fedak, MD PhD FRCSC, a cardiac surgeon at Foothills Medical Centre and scientist at the Faculty of Medicine who pioneered the new procedure.

Over 20 patients have received the new technique in Calgary as part of a pilot study. Fedak and Kathryn King, RN PhD are the co-principal investigators on the study. King, a cardiovascular nurse scientist, is an expert in post-operative recovery after open-heart surgery. "We know that recovery from sternotomy is a multi-faceted process that includes not only healing of the breastbone but the ability to return to normal activities," she says. "Being able to resume normal activities is a hallmark of a good recovery; this surgical innovation should enable that."

The patients report substantially less pain and discomfort after surgery and the use of strong pain medication, such as narcotics, is profoundly reduced if not completely eliminated with use of the procedure. The ability to deep breathe, known to play a key role in recovery, is also substantially improved.

Richard Cuming's chest was repaired in June KryptoniteTM adhesive, a biocompatible polymer (manufactured by Doctors Research Group Inc., (Connecticut USA). Two years earlier he had open-heart surgery repaired the traditional way – sewing his breastbone back together with wire. That wire broke, his breastbone opened, and Cuming had a difficult time.

"I couldn't accomplish simple tasks like squeezing toothpaste, turning the steering wheel in my car or pulling open a heavy door without discomfort and pain. Anytime I coughed or sneezed there was movement in my chest and significant pain, I think the worst part of the ordeal was that I stopped doing things 'in case they would hurt'" says Cuming.

After his chest was 'glued' back together using KryptoniteTM adhesive and wires he had an entirely different experience. "I had a little bit of pain, but this was a walk in the park compared to my earlier recovery. I can do anything I could do prior to the original surgery. I feel wonderful."

The encouraging results of this pilot study have prompted the Calgary researchers to establish a worldwide study to further investigate its benefits. The STICK Trial (STernal Innovative Closure with KryptoniteTM) aims to apply the technique in over 500 patients across the globe over the next 12 – 24 months.

"We are proud of the innovative work being done at Foothills Medical Centre," says Dr. L. Brent Mitchell, Director of the Libin Cardiovascular Institute of Alberta and Head of the Clinical Department of Cardiac Sciences at Alberta Health Services, "I used to warn my open-heart surgery patients that they would feel like they had been hit by a truck during a long recovery period; I'm glad I don't have to say that anymore."

More than one million open-heart surgeries are performed in the world each year by splitting the breastbone. Until this recent discovery, wire closure of the breastbone had been standard practice since routine heart surgery was established a half century ago.

The investigators believe that this improved method of chest closure will become a new standard of care for patients undergoing open-heart surgery. Fedak has started training surgeons in other Canadian and European hospitals where it is rapidly gaining popularity.

KryptoniteTM is approved for use in Canada (Health Canada), USA (FDA), and Europe (CE Mark). This pilot study has been supported in part by Doctor's Research Group Inc.

Jordanna Heller | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>