Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Suppressing a gene in mice prevents heart from aging, preserves its function

Study highlights:
In a mouse study, suppressing the activity of a key gene prevented age-related cardiac changes and preserved much of the heart’s function.
The study provides more evidence that physicians may one day prevent age-related heart failure in humans.

Scientists prevented age-related changes in the hearts of mice and preserved heart function by suppressing a form of the PI3K gene, in a study reported in Circulation: Journal of the American Heart Association.

“The study provides evidence that delaying or preventing heart failure in humans may be possible,” said Tetsuo Shioi, M.D., Ph.D., senior author of the study and assistant professor of medicine at Kyoto University Graduate School of Medicine in Kyoto, Japan.

“Advanced age is a major risk factor for heart failure. One reason is that aging increases the chance of exposure to cardiovascular risk factors. However, natural changes due to aging may also compromise the cardiovascular system.”

According to the American Heart Association, 5.7 million Americans have heart failure, and nearly 10 out of every 1,000 people over age 65 suffer heart failure every year.

Shioi and his colleagues studied elderly mice genetically engineered to suppress the activity of one form of the PI3K gene, which is a part of the insulin/IGF-1signaling system that helps regulate the lifespan of cells.

A variation of PI3K, known as the p110á isoform, plays an important role in tissue aging. Suppressing the isoform’s activity in the roundworm C. elegans extends its life. And in fruit flies, suppression prevents the age-dependent decline of heart function.

The Japanese researchers compared aged mice with a functional p110á to aged mice with suppressed p110á and found that mice with the suppressed gene had:

• improved cardiac function;
• less fibrosis (fibrosis causes the heart to lose flexibility);
• fewer biological markers of aging; and
• a pattern of cardiac gene expression like that of younger mice.
“This study showed that aging of the heart can be prevented by modifying the function of insulin and paves the way to preventing age-associated susceptibility to heart failure,” Shioi said.

The researchers concluded that PI3K’s role in cardiac aging involved regulating other points further downstream in the insulin/IGF-1signaling pathway, which resulted in changes in how insulin acted in heart cells. The biological mechanism by which suppressing the gene’s activity improved the survival of the mice remains unclear.

“The heart failure epidemic in the United States and many other countries is due, in part, to our aging population,” said Mariell Jessup, M.D., an American Heart Association spokesperson and professor of medicine at the University of Pennsylvania School of Medicine in Philadelphia. “Aging humans experience a slow but gradual loss of heart cells and a host of other cellular and sub-cellular abnormalities which make the remaining cells contract less efficiently. Thus, this early work in a mouse model, clarifying the role of PI3K in cardiac aging, could ultimately allow scientists to understand if human hearts are similarly influenced.”

Co-authors are: Yasutaka Inuzuka, M.D.; Junji Okuda, M.D.; Tsuneaki Kawashima, M.D.; Takao Kato, M.D.; Shinichiro Niizuma, M.D.; Yodo Tamaki, M.D.; Yoshitaka Iwanaga, M.D., Ph.D.; Yuki Yoshida, M.D., Ph.D.; Rie Kosugi, M.D., Ph.D.; Kayo Watanabe-Maeda, M.D., Ph.D.; Yoji Machida, M.D., Ph.D.; Shingo Tsuji, Ph.D.; Hiroyuki Aburatani, M.D., Ph.D.; Tohru Izumi, M.D., Ph.D.; and Toru Kita, M.D., Ph.D.

Author disclosures and funding sources are in the study.

Statements and conclusions of study authors published in American Heart Association scientific journals are solely those of the study authors and do not necessarily reflect the association’s policy or position. The association makes no representation or guarantee as to their accuracy or reliability. The association receives funding primarily from individuals; foundations and corporations (including pharmaceutical, device manufacturers and other companies) also make donations and fund specific association programs and events. The association has strict policies to prevent these relationships from influencing the science content. Revenues from pharmaceutical and device corporations are available at

NR09-1126 (Circ/Shioi-Inuzuka)

Maggie Francis | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>