Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suppressing a gene in mice prevents heart from aging, preserves its function

14.10.2009
Study highlights:
In a mouse study, suppressing the activity of a key gene prevented age-related cardiac changes and preserved much of the heart’s function.
The study provides more evidence that physicians may one day prevent age-related heart failure in humans.

Scientists prevented age-related changes in the hearts of mice and preserved heart function by suppressing a form of the PI3K gene, in a study reported in Circulation: Journal of the American Heart Association.

“The study provides evidence that delaying or preventing heart failure in humans may be possible,” said Tetsuo Shioi, M.D., Ph.D., senior author of the study and assistant professor of medicine at Kyoto University Graduate School of Medicine in Kyoto, Japan.

“Advanced age is a major risk factor for heart failure. One reason is that aging increases the chance of exposure to cardiovascular risk factors. However, natural changes due to aging may also compromise the cardiovascular system.”

According to the American Heart Association, 5.7 million Americans have heart failure, and nearly 10 out of every 1,000 people over age 65 suffer heart failure every year.

Shioi and his colleagues studied elderly mice genetically engineered to suppress the activity of one form of the PI3K gene, which is a part of the insulin/IGF-1signaling system that helps regulate the lifespan of cells.

A variation of PI3K, known as the p110á isoform, plays an important role in tissue aging. Suppressing the isoform’s activity in the roundworm C. elegans extends its life. And in fruit flies, suppression prevents the age-dependent decline of heart function.

The Japanese researchers compared aged mice with a functional p110á to aged mice with suppressed p110á and found that mice with the suppressed gene had:

• improved cardiac function;
• less fibrosis (fibrosis causes the heart to lose flexibility);
• fewer biological markers of aging; and
• a pattern of cardiac gene expression like that of younger mice.
“This study showed that aging of the heart can be prevented by modifying the function of insulin and paves the way to preventing age-associated susceptibility to heart failure,” Shioi said.

The researchers concluded that PI3K’s role in cardiac aging involved regulating other points further downstream in the insulin/IGF-1signaling pathway, which resulted in changes in how insulin acted in heart cells. The biological mechanism by which suppressing the gene’s activity improved the survival of the mice remains unclear.

“The heart failure epidemic in the United States and many other countries is due, in part, to our aging population,” said Mariell Jessup, M.D., an American Heart Association spokesperson and professor of medicine at the University of Pennsylvania School of Medicine in Philadelphia. “Aging humans experience a slow but gradual loss of heart cells and a host of other cellular and sub-cellular abnormalities which make the remaining cells contract less efficiently. Thus, this early work in a mouse model, clarifying the role of PI3K in cardiac aging, could ultimately allow scientists to understand if human hearts are similarly influenced.”

Co-authors are: Yasutaka Inuzuka, M.D.; Junji Okuda, M.D.; Tsuneaki Kawashima, M.D.; Takao Kato, M.D.; Shinichiro Niizuma, M.D.; Yodo Tamaki, M.D.; Yoshitaka Iwanaga, M.D., Ph.D.; Yuki Yoshida, M.D., Ph.D.; Rie Kosugi, M.D., Ph.D.; Kayo Watanabe-Maeda, M.D., Ph.D.; Yoji Machida, M.D., Ph.D.; Shingo Tsuji, Ph.D.; Hiroyuki Aburatani, M.D., Ph.D.; Tohru Izumi, M.D., Ph.D.; and Toru Kita, M.D., Ph.D.

Author disclosures and funding sources are in the study.

Statements and conclusions of study authors published in American Heart Association scientific journals are solely those of the study authors and do not necessarily reflect the association’s policy or position. The association makes no representation or guarantee as to their accuracy or reliability. The association receives funding primarily from individuals; foundations and corporations (including pharmaceutical, device manufacturers and other companies) also make donations and fund specific association programs and events. The association has strict policies to prevent these relationships from influencing the science content. Revenues from pharmaceutical and device corporations are available at www.americanheart.org/corporatefunding.

NR09-1126 (Circ/Shioi-Inuzuka)

Maggie Francis | EurekAlert!
Further information:
http://www.heart.org
http://www.americanheart.org/corporatefunding

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>