Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superslippery islands (but then they get stuck)

23.06.2015

A simple reversible process that changes friction in the nanoworld

(Nano)islands that slide freely on a sea of copper, but when they become too large (and too dense) they end up getting stuck: that nicely sums up the system investigated in a study just published in Nature Nanotechnology.


This is a simulation of xenon islands on a copper substrate (Cu 111).

Credit: SISSA

"We can suddenly switch from a state of superlubricity to one of extremely high friction by varying some parameters of the system being investigated. In this study, we used atoms of the noble gas xenon bound to one another to form two-dimensional islands, deposited on a copper surface (Cu 111).

At low temperatures these aggregates slide with virtually no friction", explains Giampaolo Mistura of the University of Padua. "We increased the size of the islands by adding xenon atoms and until the whole available surface was covered the friction decreased gradually.

Instead, when the available space ran out and the addition of atoms caused the islands to compress, then we saw an exceptional increase in friction".

The study was divided into an experimental part (mainly carried out by the University of Padua and Nano-Cnr/University of Modena and Reggio Emilia) and a theoretical part (based on computer models and simulations) conducted by SISSA/Iom-Cnr-Democritos/ICTP.

"To understand what happens when the islands are compressed, we need to appreciate the concept of 'interface commensurability'", explains Roberto Guerra, researcher at the International School for Advanced Studies (SISSA) in Trieste and among the authors of the study.

"We can think of the system we studied as one made up of Lego bricks. The copper substrate is like a horizontal assembly of bricks and the xenon islands like single loose bricks", comments Guido Paolicelli of the CNR Nanoscience Institute.

"If the substrate and the islands consist of different bricks (in terms of width and distance between the studs), the islands will never get stuck on the substrate. This situation reproduces our system at temperatures slightly above absolute zero where we observe a state of superlubricity with virtually no friction.

However, the increase in surface of the islands and the resulting compression of the material causes the islands to become commensurate to the substrate - like Lego bricks having the same pitch - and when that happens they suddenly get stuck".

The study is the first to demonstrate that it is possible to dramatically vary the sliding properties of nano-objects. "We can imagine a number of applications for this", concludes Guerra. "For example, nanobearings could be developed that, under certain conditions, are capable of blocking their motion, in a completely reversible manner".

Media Contact

Federica Sgorbissa
pressoffice@sissa.it
39-040-378-7644

 @sissaschool

http://www.sissa.it 

Federica Sgorbissa | EurekAlert!

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>