Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sugar substitutes not so super sweet after all


The taste of common sugar substitutes is often described as being much more intense than sugar, but participants in a recent study indicated that these non-nutritive sugar substitutes are no sweeter than the real thing, according to Penn State food scientists.

In the study, participants compared the taste of non-nutritive sweeteners that are often used as low- or no-calorie sugar substitutes with those of nutritive sweeteners, such as sugar, maple syrup and agave nectar. The participants indicated they could perceive the non-nutritive sweeteners -- such as aspartame, marketed as NutraSweet; acesulfameK, often called AceK; and RebA, a compound found in the stevia plant -- at lower concentrations than real sugar, but the intensity of these sensations was no sweeter than sugar and other nutritive sweeteners.

"While you can detect non-nutritive sweeteners at lower levels than sugar, that doesn't really tell us anything about the perceived intensity of that sweetness," said John Hayes, assistant professor, food science and director of the sensory evaluation center.

The assumption that these sweeteners are excessively sweet may be the result of confusing potency and intensity, said Hayes, who worked with Rachel Antenucci, a graduate student in food science.

"In terms of receptor biology, the potency of a substance describes the lowest concentration that activates a taste receptor, but this does not predict the intensity, or magnitude, of the response," said Hayes.

The ability to detect sweetness of non-nutritive sweeteners at low levels, then, is related to their potency, but not their intensity, he added. Sugar, on the other hand, is less potent but causes more intense sensations of sweetness.

"These ingredients are often marketed or described as 'high-intensity' sweeteners, but that's misleading," said Hayes. "Our data confirm other work showing the maximal sweetness of low-cal sweeteners is often much lower than that of table sugar or other natural sweeteners, like maple syrup."

The researchers, whose findings are available online in the International Journal of Obesity, said these sweeteners did not seem to act as supernormal stimuli -- a term first used by Nobel laureate Niko Tingergen to describe exaggerated stimuli that serve as triggers for innate behaviors.

Some psychologists have suggested that supernormal stimuli and the responses they provoke could be a factor in the obesity epidemic, said Hayes.

"We have evolved to like sweetness from before birth, so some people assume so-called 'high intensity' sweeteners hijack or over-stimulate our natural drive to consume sweet foods, causing us to overeat," said Hayes. "However, this view assumes that foods we eat today are more intense than those we would have been exposed to evolutionarily, and our data imply this isn't the case."

Hayes also said the availability of highly desired foods may play a more important role in the obesity epidemic.

The researchers recruited 401 participants to take part in a series of taste tests held at the Sensory Evaluation Center at Penn State. Once the subjects were briefed on the study, they tasted between 12 and 15 separate samples that contained maple syrup, agave nectar and sucrose, as well as various concentrations of aspartame, sucralose, AceK and RebA. Participants indicated that the caloric sweeteners all had higher sweetness ratings than the non-nutritive sweeteners.


The participants also indicated that as the concentrations of sucralose, AceK and RebA were increased, the sweetness leveled off and the taste became more bitter.

The National Institutes of Health supported this work.

Matt Swayne | Eurek Alert!
Further information:

Further reports about: Health agave concentrations epidemic factor natural nectar receptor stimuli sugar sweet

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>