Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For sufferers of an early-onset dementia, career choice may determine location of disease in brain

23.09.2010
In an international study of patients with a devastating type of dementia that often strikes in middle age, researchers have found intriguing evidence that career choice may influence where the disease takes root in the brain.

The study was led by Baycrest's Rotman Research Institute in collaboration with the Memory and Aging Centre at the University of California, San Francisco and several U.S. and European clinical sites. It appears online today in the Article in Press section of the journal Neuropsychologia, ahead of publication.

Researchers conducted a multi-centre, retrospective chart review of brain imaging and occupation data from 588 patients diagnosed with frontotemporal lobar degeneration (FTLD), sometimes referred to as frontotemporal dementia (FTD). Among the dementias affecting those 65 years and younger, FTLD is as common as Alzheimer's disease. Like Alzheimer's, it is progressive and fatal. Unlike Alzheimer's, which tends to affect both sides of the brain equally, FTLD often manifests on either the left or the right side of the brain, then becomes more widespread as the disease progresses. Typical symptoms include changes in personality and behaviour, and a decline in language skills.

For this study, each patient's occupation was rated with scores derived from an occupation database published by the U.S. Department of Labor. The scores indicated the skills required for the occupation, including verbal, physical and visuospatial skills. For example, a school principal would receive a higher rating for verbal skills than for visuospatial skills, whereas a flight engineer would show the opposite pattern. Both of these professions would score lower on physical skills than a firefighter.

The researchers correlated each patient's occupation scores with the location of brain tissue loss as determined from brain imaging results. They found that patients with professions rated highly for verbal skills, such as school principals, had greater tissue loss on the right side of the brain, whereas those rated low for verbal skills, such as flight engineers, had greater tissue loss on the left side of the brain. This effect was expressed most clearly in the temporal lobes of the brain.

"The disease appeared to attack the side of the brain that was the least used in the patient's professional life," said Dr. Nathan Spreng, who conducted the study as a psychology graduate student at Baycrest and is now a post doctoral fellow in the Department of Psychology at Harvard University.

The brain's left hemisphere, particularly the temporal lobe, is specialized for language and verbal skills. In occupations ranked highly for verbal skills, tens of thousands of hours of applying these skills may build reserve capacity by strengthening connections in the brain's left hemisphere, making it more resistant to damage due to FTLD, suggested Dr. Spreng. This process may also make the right hemisphere, which is less concerned with verbal tasks, more vulnerable to dementia through disuse.

Yet the researchers could not rule out an alternative explanation. "There may be an undetected functional impairment related to FTLD in these patients that biases them toward a certain career path decades before they get sick," said Dr. Brian Levine of the Rotman Research Institute and senior author on the study.

What is common to both explanations is that the patients' selection and practice of an occupation early in life was related to their brain changes later in life. The authors cautioned that the results were limited to FTLD and may not hold for other brain diseases or conditions.

There is no evidence that someone with a particularly verbal or non-verbal profession is vulnerable to brain disease. However, if that person were to develop FTLD (affecting approximately 250,000 Americans and 25,000 Canadians a year), the location of the disease may relate to occupational practice. Further research will be needed to determine how strong a predictor occupation may be for hemispheric localization of the disease.

FTLD patient data for this study was collected from nine neurology clinics in Canada, the U.S., Germany and the U.K. The study was funded by the Canadian Institutes of Health Research and the National Institute of Child Health and Human Development.

Kelly Connelly | EurekAlert!
Further information:
http://www.baycrest.org

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>