Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sudden Cardiac Death Subject of Sweeping UCSF Study in San Francisco

16.06.2011
A new study by the University of California, San Francisco’s Cardiac Electrophysiology Service seeks to discover for the first time the true causes of sudden cardiac death (SCD), why it is more prevalent in some demographic populations, and whether it is too often inaccurately cited as a cause of death.

Working with the Office of the Chief Medical Examiner for the City and County of San Francisco, researchers will fully investigate every death attributed to a sudden cardiac event in San Francisco over a three-year period. They hope to learn the biological risk factors for the disease and improve medical therapy for patients.

The rich character and cultural composition of San Francisco make it an ideal microcosm for such population studies. According to the U.S. Census Bureau, San Francisco’s current level of ethnic diversity is where the national demographic will shift to in about 30 years. The researchers express hope that the study will result in valid predictors for the prevalence and causes of sudden death within the entire U.S. population.

Recognizing the need for timely research in sudden death, the National Institutes of Health awarded UCSF funding of $1.9 million over five years for Zian H. Tseng, MD, assistant professor of medicine in UCSF’s Cardiac Electrophysiology Service, to mount a comprehensive community-based project with the Medical Examiner’s office, where all such deaths are reported.

“More than anything, we want to prevent SCDs by understanding who is at highest risk for the disease and which medical interventions, like defibrillators, are likely to be most effective,” Tseng said. “To do that, we need to know the prevalence of risk factors such as inherited arrhythmias in various populations and whether an individual actually died of SCD rather than an aneurysm, for example. A great way to collect that data is to utilize public information already being collected by the Medical Examiner’s Office.”

According to Amy Hart, San Francisco’s chief medical examiner, “There are really no guidelines for medical examiners and coroners in the investigation of sudden cardiac deaths. This research will inform not only a large public health problem but could also advise future policy for all medical examiners.”

Ellen Moffatt, MD, assistant Medical Examiner and a collaborator on the study added, “We are excited to partner with Dr. Tseng on this important project. Sudden cardiac deaths make up a large burden of overall mortality but have been inconsistently investigated.”

Sudden cardiac death affects an estimated 295,000 people per year and impacts ethnic populations with varying degrees of incidence; African Americans, for example, suffer a rate nearly three times higher than Caucasians. SCD is defined by the American Heart Association as death resulting from an abrupt loss of heart function, or cardiac arrest, in which the victim may or may not have diagnosed heart disease. The time and mode of death are unexpected and occur within minutes after symptoms appear.

There are many reasons for the study, according to Tseng. Little is actually known about the underlying causes of sudden death or what accounts for the observed racial disparity. The disease has not been widely researched; what knowledge does exist is nearly 30 years old and has been derived mostly from homogeneous Caucasian populations, and likely included subjects who died of reasons other than SCD.

“To complicate the situation further,” Tseng said, “when autopsies are performed on only 10 percent to 15 percent of cases, it makes for a lot of assumptions.”

During the second phase of the study, the team will build a database of the cases, including information about heart tissue and clinical data from the deceased subjects’ past medical records.

Tseng has designed a systematic way of looking at the heart that analyzes factors such as scarring, weight and thickness of heart walls, as well as the presence of other conditions including diseases of the heart valves. Information from autopsies previously performed by the Medical Examiner’s Office on individuals who died from causes not related to the heart, such as falls or car accidents, will be compared against the SCD data.

The World Health Association defines SCD as collapse within one hour of symptom onset, if witnessed, or last seen alive 24 hours before collapse, if not witnessed. Tseng hypothesized that the very definition of sudden cardiac death is inaccurate, allowing deaths from unknown causes – such as hemorrhage, vascular aneurysm or stroke – to be lumped into the sudden-death category by physicians filling out death certificates.

Knowing the actual cause of death is critical, say researchers, because medical responses such as defibrillators can help prevent SCD for someone prone to cardiac arrhythmias, but will not help a patient with, say, a heart valve malfunction.

“Until we know what we’re dealing with, we can’t apply our treatments properly,” Tseng said. The team also hopes that the SCD research effort will encourage community physicians to order autopsies when faced with possible SCD cases – only then will answers about the little-known disease come to light.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, visit www.ucsf.edu.

Jeffrey Norris | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>