Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sudden Cardiac Death Subject of Sweeping UCSF Study in San Francisco

16.06.2011
A new study by the University of California, San Francisco’s Cardiac Electrophysiology Service seeks to discover for the first time the true causes of sudden cardiac death (SCD), why it is more prevalent in some demographic populations, and whether it is too often inaccurately cited as a cause of death.

Working with the Office of the Chief Medical Examiner for the City and County of San Francisco, researchers will fully investigate every death attributed to a sudden cardiac event in San Francisco over a three-year period. They hope to learn the biological risk factors for the disease and improve medical therapy for patients.

The rich character and cultural composition of San Francisco make it an ideal microcosm for such population studies. According to the U.S. Census Bureau, San Francisco’s current level of ethnic diversity is where the national demographic will shift to in about 30 years. The researchers express hope that the study will result in valid predictors for the prevalence and causes of sudden death within the entire U.S. population.

Recognizing the need for timely research in sudden death, the National Institutes of Health awarded UCSF funding of $1.9 million over five years for Zian H. Tseng, MD, assistant professor of medicine in UCSF’s Cardiac Electrophysiology Service, to mount a comprehensive community-based project with the Medical Examiner’s office, where all such deaths are reported.

“More than anything, we want to prevent SCDs by understanding who is at highest risk for the disease and which medical interventions, like defibrillators, are likely to be most effective,” Tseng said. “To do that, we need to know the prevalence of risk factors such as inherited arrhythmias in various populations and whether an individual actually died of SCD rather than an aneurysm, for example. A great way to collect that data is to utilize public information already being collected by the Medical Examiner’s Office.”

According to Amy Hart, San Francisco’s chief medical examiner, “There are really no guidelines for medical examiners and coroners in the investigation of sudden cardiac deaths. This research will inform not only a large public health problem but could also advise future policy for all medical examiners.”

Ellen Moffatt, MD, assistant Medical Examiner and a collaborator on the study added, “We are excited to partner with Dr. Tseng on this important project. Sudden cardiac deaths make up a large burden of overall mortality but have been inconsistently investigated.”

Sudden cardiac death affects an estimated 295,000 people per year and impacts ethnic populations with varying degrees of incidence; African Americans, for example, suffer a rate nearly three times higher than Caucasians. SCD is defined by the American Heart Association as death resulting from an abrupt loss of heart function, or cardiac arrest, in which the victim may or may not have diagnosed heart disease. The time and mode of death are unexpected and occur within minutes after symptoms appear.

There are many reasons for the study, according to Tseng. Little is actually known about the underlying causes of sudden death or what accounts for the observed racial disparity. The disease has not been widely researched; what knowledge does exist is nearly 30 years old and has been derived mostly from homogeneous Caucasian populations, and likely included subjects who died of reasons other than SCD.

“To complicate the situation further,” Tseng said, “when autopsies are performed on only 10 percent to 15 percent of cases, it makes for a lot of assumptions.”

During the second phase of the study, the team will build a database of the cases, including information about heart tissue and clinical data from the deceased subjects’ past medical records.

Tseng has designed a systematic way of looking at the heart that analyzes factors such as scarring, weight and thickness of heart walls, as well as the presence of other conditions including diseases of the heart valves. Information from autopsies previously performed by the Medical Examiner’s Office on individuals who died from causes not related to the heart, such as falls or car accidents, will be compared against the SCD data.

The World Health Association defines SCD as collapse within one hour of symptom onset, if witnessed, or last seen alive 24 hours before collapse, if not witnessed. Tseng hypothesized that the very definition of sudden cardiac death is inaccurate, allowing deaths from unknown causes – such as hemorrhage, vascular aneurysm or stroke – to be lumped into the sudden-death category by physicians filling out death certificates.

Knowing the actual cause of death is critical, say researchers, because medical responses such as defibrillators can help prevent SCD for someone prone to cardiac arrhythmias, but will not help a patient with, say, a heart valve malfunction.

“Until we know what we’re dealing with, we can’t apply our treatments properly,” Tseng said. The team also hopes that the SCD research effort will encourage community physicians to order autopsies when faced with possible SCD cases – only then will answers about the little-known disease come to light.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, visit www.ucsf.edu.

Jeffrey Norris | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>