Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subtle change in DNA, protein levels determines blond or brunette tresses, study finds

02.06.2014

A molecule critical to stem cell function plays a major role in determining human hair color, according to a study from the Stanford University School of Medicine.

The study describes for the first time the molecular basis for one of our most noticeable traits. It also outlines how tiny DNA changes can reverberate through our genome in ways that may affect evolution, migration and even human history.

"We've been trying to track down the genetic and molecular basis of naturally occurring traits — such as hair and skin pigmentation — in fish and humans to get insight into the general principles by which traits evolve," said David Kingsley, PhD, professor of developmental biology.

"Now we find that one of the most crucial signaling molecules in mammalian development also affects hair color."

... more about:
»DNA »KITLG »Medicine »hair »humans »nucleotides »regulatory »skin »tiny

Kingsley, who is also a Howard Hughes Medical Institute investigator, is the senior author of the study, which will be published online June 1 in Nature Genetics. Research specialist Catherine Guenther, PhD, is the lead author.

The researchers found that the blond hair commonly seen in Northern Europeans is caused by a single change in the DNA that regulates the expression of a gene that encodes a protein called KITLG, also known as stem cell factor. This change affects how much KITLG is expressed in the hair follicles without changing how it's expressed in the rest of the body. Introducing the change into normally brown-haired laboratory mice yields an animal with a decidedly lighter coat — not quite Norma Jeane to Marilyn Monroe, but significant nonetheless.

The study shows that even small, tissue-specific changes in the expression of genes can have noticeable morphological effects. It also emphasizes how difficult it can be to clearly connect specific DNA changes with particular clinical or phenotypic outcomes. In this case, the change is subtle: A single nucleotide called an adenine is replaced by another called a guanine on human chromosome 12. The change occurs over 350,000 nucleotides away from the KITLG gene and only alters the amount of gene expression about 20 percent — a relatively tiny blip on a biological scale more often assessed in terms of gene expression being 100 percent "on" or "off."

"What we're seeing is that this regulatory region exercises exquisite control over where, and how much, KITLG expression occurs," said Kingsley. "In this case, it controls hair color. In another situation — perhaps under the influence of a different regulatory region — it probably controls stem cell division. Dialing up and down the expression of an essential growth factor in this manner could be a common mechanism that underlies many different traits."

Kingsley is known for his studies of the evolution of a tiny fish called the threespine stickleback. The stickleback adapts quickly to changes in its environment. It becomes darker in murky lakes, and develops modified spine, fin and armor structures in response to different types of predators. Kingsley's research has shown that these adaptive changes are often driven by changes in the regulatory regions that surround and control gene expression, rather than within the coding regions of the genes themselves.

In the current study, the researchers had a couple of clues as to which regulatory regions might be important in hair color. One was the fact that the adenine-to-guanine nucleotide change had been previously associated with blond hair color in Northern Europeans in genome-wide association studies. The second was the existence in laboratory mice of a large mutation called an inversion that affects several million nucleotides near the KITLG gene. Mice with two copies of this mutation (one on each chromosome) are white; those with just one copy are significantly lighter than wild-type mice. But it wasn't known exactly how either of these changes affects hair pigment.

The researchers began by confirming that the mouse mutation occurs in a region that is similar, or homologous, to where the single nucleotide change occurs in humans. They also showed that the skin of mice with one copy of the mutation expressed about 60 percent the amount of KITLG as the skin of mice without the mutation.

Further study showed that the region of human DNA that contained the single nucleotide change associated with blondness specifically affected the expression of KITLG only in hair follicles.

Finally, the researchers replaced the mouse mutation with human sequences with and without the blond-associated nucleotide change. Those with the guanine tied to blond hair in humans did in fact have significantly lighter hair.

"Because this nucleotide switch only effects the KITLG expression by about 20 percent or so, it would have been difficult to believe it would have such an effect on hair color," Kingsley said. "For that we needed these very carefully constructed, well-controlled animal models. They clearly showed us that this small difference in expression is enough to switch hair color in these animals."

He added: "It's clear that this hair color change is occurring through a regulatory mechanism that operates only in the hair. This isn't something that also affects other traits, like intelligence or personality. The change that causes blond hair is, literally, only skin deep."

###

Other Stanford authors of the study are former postdoctoral scholar Bosiljka Tasic, PhD, and professor of biology Liqun Luo, PhD.

The research was funded by the National Institutes of Health (grant 5P50HG2568) and the Howard Hughes Medical Institute.

Information about Stanford's Department of Developmental Biology, which also supported the work, is available at http://devbio.stanford.edu.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Krista Conger | Eurek Alert!

Further reports about: DNA KITLG Medicine hair humans nucleotides regulatory skin tiny

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>