Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying bat skulls, evolutionary biologists discover how species evolve

24.11.2011
'This study conducted during the International Year of the Bat offers a clear example of how the evolution of new traits, in this case a skull with a new shape, allowed animals to use new resources and eventually, to rapidly evolve into many new species'

A new study involving bat skulls, bite force measurements and scat samples collected by an international team of evolutionary biologists is helping to solve a nagging question of evolution: Why some groups of animals develop scores of different species over time while others evolve only a few. Their findings appear in the current issue of Proceedings of the Royal Society B: Biological Sciences.


The skulls and faces of a nectar-eating bat (left) an insect-eating bat (middle) and a fruit bat (right). The short skulls of fruit bats allow them to bite harder than nectar or insect-eating bats. Credit: Elizabeth Dumont, UMass Amherst

To answer this question, Elizabeth Dumont at the University of Massachusetts Amherst and Liliana Dávalos of Stony Brook University together with colleagues at UCLA and the Leibniz Institute for Zoo and Wildlife Research, Berlin, compiled large amounts of data on the diet, bite force and skull shape in a family of New World bats, and took advantage of new statistical techniques to date and document changes in the rate of evolution of these traits and the number of species over time.

They investigated why there are so many more species of New World Leaf-Nosed bats, nearly 200, while their closest relatives produced only 10 species over the same period of time. Most bats are insect feeders, while the New World Leaf-Nosed bats eat nectar, fruit, frogs, lizards and even blood.

One hypothesis is that the evolution of a trait, such as head shape, that gives access to new resources can lead to the rapid evolution of many new species. As Dumont and Dávalos explain, connecting changes in body structure to an ecological opportunity requires showing that a significant increase in the number of species occurred in tandem with the appearance of new anatomical traits, and that those traits are associated with enhanced resource use.

"If the availability of fruit provided the ecological opportunity that, in the presence of anatomical innovations that allowed eating the fruit, led to a significant increase in the birth of new species, then skull morphology should predict both diet and bite force" they said. They found support for these predictions by analyzing thousands of evolutionary trees of more than 150 species, measuring over 600 individual bat skulls of 85 species, testing bite force in over 500 individual bats from 39 species in the field and examining thousands of scat samples to identify the bats' diets.

They found that the emergence of a new skull shape in New World Leaf-Nosed bats about 15 million years ago led to an explosion of many new bat species. The new shape was a low, broad skull that allowed even small bats to produce the strong bite needed to eat hard fruits. The rate of birth of new species jumped as this new shape evolved, and this group of bats quickly increased the proportion of fruit in their diet. Change in shape slowed once this new skull had evolved.

It can be difficult for evolutionary biologists to demonstrate that traits related to anatomical changes, also called "morphological innovations" such as a new skull shape, give certain groups a survival advantage when new food sources, such as hard fruits, become available.

"This study conducted during the International Year of the Bat offers a clear example of how the evolution of new traits, in this case a skull with a new shape, allowed animals to use new resources and eventually, to rapidly evolve into many new species," Dumont says. "We found that when a new ecological niche opened up with an opportunity for bats that could eat hard fruits, they shifted their diet significantly, which in turn led to the evolution of new species."

A graphic is available at: www.umass.edu/newsoffice/

There are other figures and a movie at: ftp://marlin.bio.umass.edu/pub/dumont/Bat%20Evolution%20Stills+Video/

Contact: Janet Lathrop, 413-545-0444; jlathrop@admin.umass.edu

Elizabeth Dumont, 413-545-3565; bdumont@bio.umass.edu

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>