Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying bat skulls, evolutionary biologists discover how species evolve

24.11.2011
'This study conducted during the International Year of the Bat offers a clear example of how the evolution of new traits, in this case a skull with a new shape, allowed animals to use new resources and eventually, to rapidly evolve into many new species'

A new study involving bat skulls, bite force measurements and scat samples collected by an international team of evolutionary biologists is helping to solve a nagging question of evolution: Why some groups of animals develop scores of different species over time while others evolve only a few. Their findings appear in the current issue of Proceedings of the Royal Society B: Biological Sciences.


The skulls and faces of a nectar-eating bat (left) an insect-eating bat (middle) and a fruit bat (right). The short skulls of fruit bats allow them to bite harder than nectar or insect-eating bats. Credit: Elizabeth Dumont, UMass Amherst

To answer this question, Elizabeth Dumont at the University of Massachusetts Amherst and Liliana Dávalos of Stony Brook University together with colleagues at UCLA and the Leibniz Institute for Zoo and Wildlife Research, Berlin, compiled large amounts of data on the diet, bite force and skull shape in a family of New World bats, and took advantage of new statistical techniques to date and document changes in the rate of evolution of these traits and the number of species over time.

They investigated why there are so many more species of New World Leaf-Nosed bats, nearly 200, while their closest relatives produced only 10 species over the same period of time. Most bats are insect feeders, while the New World Leaf-Nosed bats eat nectar, fruit, frogs, lizards and even blood.

One hypothesis is that the evolution of a trait, such as head shape, that gives access to new resources can lead to the rapid evolution of many new species. As Dumont and Dávalos explain, connecting changes in body structure to an ecological opportunity requires showing that a significant increase in the number of species occurred in tandem with the appearance of new anatomical traits, and that those traits are associated with enhanced resource use.

"If the availability of fruit provided the ecological opportunity that, in the presence of anatomical innovations that allowed eating the fruit, led to a significant increase in the birth of new species, then skull morphology should predict both diet and bite force" they said. They found support for these predictions by analyzing thousands of evolutionary trees of more than 150 species, measuring over 600 individual bat skulls of 85 species, testing bite force in over 500 individual bats from 39 species in the field and examining thousands of scat samples to identify the bats' diets.

They found that the emergence of a new skull shape in New World Leaf-Nosed bats about 15 million years ago led to an explosion of many new bat species. The new shape was a low, broad skull that allowed even small bats to produce the strong bite needed to eat hard fruits. The rate of birth of new species jumped as this new shape evolved, and this group of bats quickly increased the proportion of fruit in their diet. Change in shape slowed once this new skull had evolved.

It can be difficult for evolutionary biologists to demonstrate that traits related to anatomical changes, also called "morphological innovations" such as a new skull shape, give certain groups a survival advantage when new food sources, such as hard fruits, become available.

"This study conducted during the International Year of the Bat offers a clear example of how the evolution of new traits, in this case a skull with a new shape, allowed animals to use new resources and eventually, to rapidly evolve into many new species," Dumont says. "We found that when a new ecological niche opened up with an opportunity for bats that could eat hard fruits, they shifted their diet significantly, which in turn led to the evolution of new species."

A graphic is available at: www.umass.edu/newsoffice/

There are other figures and a movie at: ftp://marlin.bio.umass.edu/pub/dumont/Bat%20Evolution%20Stills+Video/

Contact: Janet Lathrop, 413-545-0444; jlathrop@admin.umass.edu

Elizabeth Dumont, 413-545-3565; bdumont@bio.umass.edu

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>