Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study yields better turbine spacing for large wind farms

21.01.2011
Large wind farms are being built around the world as a cleaner way to generate electricity, but operators are still searching for the most efficient way to arrange the massive turbines that turn moving air into power.

To help steer wind farm owners in the right direction, Charles Meneveau, a Johns Hopkins fluid mechanics and turbulence expert, working with a colleague in Belgium, has devised a new formula through which the optimal spacing for a large array of turbines can be obtained.

"I believe our results are quite robust," said Meneveau, who is the Louis Sardella Professor of Mechanical Engineering in the university's Whiting School of Engineering. "They indicate that large wind farm operators are going to have to space their turbines farther apart."

The newest wind farms, which can be located on land or offshore, typically use turbines with rotor diameters of about 300 feet. Currently, turbines on these large wind farms are spaced about seven rotor diameters apart. The new spacing model developed by Meneveau and Johan Meyers, an assistant professor at Katholieke Universiteit Leuven in Belgium, suggests that placing the wind turbines 15 rotor diameters apart -- more than twice as far apart as in the current layouts -- results in more cost-efficient power generation.

Meneveau presented the study results recently at a meeting of the American Physical Society Division of Fluid Dynamics. Meyers, co-author of the study, was unable to attend.

The research is important because large wind farms – consisting of hundreds or even thousands of turbines – are planned or already operating in the western United States, Europe and China. "The early experience is that they are producing less power than expected," Meneveau said. "Some of these projects are underperforming."

Earlier computational models for large wind farm layouts were based on simply adding up what happens in the wakes of single wind turbines, Meneveau said. The new spacing model, he said, takes into account interaction of arrays of turbines with the entire atmospheric wind flow.

Meneveau and Meyers argue that the energy generated in a large wind farm has less to do with horizontal winds and is more dependent on the strong winds that the turbulence created by the tall turbines pulls down from higher up in the atmosphere. Using insights gleaned from high-performance computer simulations as well as from wind tunnel experiments, they determined that in the correct spacing, the turbines alter the landscape in a way that creates turbulence, which stirs the air and helps draw more powerful kinetic energy from higher altitudes.

The experiments were conducted in the Johns Hopkins wind tunnel, which uses a large fan to generate a stream of air. Before it enters the testing area, the air passes through an "active grid," a curtain of perforated plates that rotate randomly and create turbulence so that the air moving through the tunnel more closely resembles real-life wind conditions.

Air currents in the tunnel pass through a series of small three-bladed model wind turbines mounted atop posts, mimicking an array of full-size wind turbines. Data concerning the interaction of the air currents and the model turbines is collected by using a measurement procedure called stereo particle-image-velocimetry, which requires a pair of high-resolution digital cameras, smoke and laser pulses.

Further research is needed, Meneveau said, to learn how varying temperatures can affect the generation of power on large wind farms. The Johns Hopkins professor has applied for continued funding to conduct such studies.

Related links:

Johns Hopkins video on wind turbine research: http://www.youtube.com/watch?v=U3F9qGo549k

Johns Hopkins News Release - Wind Turbines Produce 'Green' Energy — and Airflow Mysteries: http://www.jhu.edu/news/home07/dec07/wind.html

National Science Foundation Feature - Lab Tests Show Wind Turbine's Air Flow: http://www.nsf.gov/discoveries/disc_summ.jsp?org=NSF&cntn_id=112626&preview=false

Charles Meneveau's research page: http://www.me.jhu.edu/meneveau/

Johns Hopkins Department of Mechanical Engineering: http://www.me.jhu.edu/

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>