Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study by Virginia Tech engineer focuses on antibiotic resistance caused by environmental factors

21.01.2014
The World Health Organization and the Center for Disease Control has recognized antibiotic resistance "as a critical health challenge of our time," said Amy Pruden (http://www.cee.vt.edu/people/pruden.html), a Virginia Tech environmental engineer who is credited with pioneering the concept of antibiotic resistance genes as environmental pollutants.

Pruden said reducing the spread of antibiotic resistance is a critical measure needed to prolong the effectiveness of currently available antibiotics. This is important since "new drug discovery can no longer keep pace with emerging antibiotic-resistant infections," Pruden said.

Pruden is a 2006 National Science Foundation CAREER award recipient as well as a 2007 Presidential Early Career Award in Science and Engineering honoree.

Pruden's unique expertise in characterizing environmental sources and pathways of antibiotic resistance has garnered her as lead of a new NSF RAPID grant to study the recent Colorado flood's effect on antibiotic resistance genes.

She will work with Mazddak Arabi of Colorado State University and Diana Aga of the University of Buffalo on the project that will improve the understanding of the role the watershed processes play in disseminating resistance.

For more than 10 years, this research team has monitored the watershed of the South Platte River Basin, southwest of Denver. "We have already generated a robust data set of antibiotic resistance genes and antibiotics, as well as a unique interdisciplinary watershed-scale approach for characterizing the land-use on their distribution," Pruden explained.

The recent Colorado flooding occurred during the week of Sept. 9, 2013, with flood waters affecting 17 counties over a spread of 200 miles north to south, transporting enormous loads of sediment and transforming the semi-arid landscape of the Front Range of Colorado.

When an antibiotic is consumed, researchers have learned that up to 90 percent passes through a body without metabolizing. This means the drugs can leave the body almost intact through normal bodily functions.

In the case of agricultural areas, excreted antibiotics can then enter stream and river environments through a variety of ways, including discharges from animal feeding operations, fish hatcheries, and nonpoint sources such as the flow from fields where manure or biosolids have been applied. Water filtered through wastewater treatment plants may also contain used antibiotics.

Consequently, these releases become "potential sources of antibiotic resistance genes," said Pruden.

The overall goal of their new research grant is to take advantage of the knowledge gained from the flooding in Colorado to help clarify what mechanisms control the fate and transport of antibiotic resistance genes originating from wastewater treatment plants and animal feeding operations in the watershed.

"Our overarching hypothesis is that two main mechanisms drive antibiotic resistance gene dissemination: selection by antibiotics and/or metals and the transport via physical processes such as sediment transport," Pruden said.

Their method will be to compare the antibiotic resistance elements in water and sediment samples along a defined pristine-urban-agricultural river gradient from before and after the flood.

They will also compare antibiotics and metals in water and sediment samples along a defined pristine-urban-agricultural river gradient and examine the correlation with antibiotic resistance genes from before and after the flood.

"We believe our research will have vital implications for the development of effective policy and management practices to prolong the useful lifespan of antibiotics critical to human and animal health," Pruden said.

Emily Lipscomb, of Swanton, Md., an NSF graduate research fellow, will help carry out the project along with assistance from undergraduate students alongside the trio of faculty leading this work.

The College of Engineering (http://www.eng.vt.edu/) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Related Links
• New microfluidic chip can help identify unwanted particles in water and food (http://www.vtnews.vt.edu/articles/2013/07/070113-engineering-microfluidchip.html)

• Amy Pruden to spearhead $250,000 study on the building plumbing microbiome (http://www.vtnews.vt.edu/articles/2012/11/110112-engineering-prudenstudyplumbingmicrobiome.html)

• Virginia Tech engineer identifies pollution as a new concern for antibiotic resistance (http://www.vtnews.vt.edu/articles/2011/01/010511-engineering-pruden.html)

This story can be found on the Virginia Tech News website:
http://www.vtnews.vt.edu/articles/2014/01/012114-engineering-amyprudenantibioticresistance.html

Lynn A. Nystrom | VT News
Further information:
http://www.vt.edu
http://www.eng.vt.edu/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>