Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study by Virginia Tech engineer focuses on antibiotic resistance caused by environmental factors

The World Health Organization and the Center for Disease Control has recognized antibiotic resistance "as a critical health challenge of our time," said Amy Pruden (, a Virginia Tech environmental engineer who is credited with pioneering the concept of antibiotic resistance genes as environmental pollutants.

Pruden said reducing the spread of antibiotic resistance is a critical measure needed to prolong the effectiveness of currently available antibiotics. This is important since "new drug discovery can no longer keep pace with emerging antibiotic-resistant infections," Pruden said.

Pruden is a 2006 National Science Foundation CAREER award recipient as well as a 2007 Presidential Early Career Award in Science and Engineering honoree.

Pruden's unique expertise in characterizing environmental sources and pathways of antibiotic resistance has garnered her as lead of a new NSF RAPID grant to study the recent Colorado flood's effect on antibiotic resistance genes.

She will work with Mazddak Arabi of Colorado State University and Diana Aga of the University of Buffalo on the project that will improve the understanding of the role the watershed processes play in disseminating resistance.

For more than 10 years, this research team has monitored the watershed of the South Platte River Basin, southwest of Denver. "We have already generated a robust data set of antibiotic resistance genes and antibiotics, as well as a unique interdisciplinary watershed-scale approach for characterizing the land-use on their distribution," Pruden explained.

The recent Colorado flooding occurred during the week of Sept. 9, 2013, with flood waters affecting 17 counties over a spread of 200 miles north to south, transporting enormous loads of sediment and transforming the semi-arid landscape of the Front Range of Colorado.

When an antibiotic is consumed, researchers have learned that up to 90 percent passes through a body without metabolizing. This means the drugs can leave the body almost intact through normal bodily functions.

In the case of agricultural areas, excreted antibiotics can then enter stream and river environments through a variety of ways, including discharges from animal feeding operations, fish hatcheries, and nonpoint sources such as the flow from fields where manure or biosolids have been applied. Water filtered through wastewater treatment plants may also contain used antibiotics.

Consequently, these releases become "potential sources of antibiotic resistance genes," said Pruden.

The overall goal of their new research grant is to take advantage of the knowledge gained from the flooding in Colorado to help clarify what mechanisms control the fate and transport of antibiotic resistance genes originating from wastewater treatment plants and animal feeding operations in the watershed.

"Our overarching hypothesis is that two main mechanisms drive antibiotic resistance gene dissemination: selection by antibiotics and/or metals and the transport via physical processes such as sediment transport," Pruden said.

Their method will be to compare the antibiotic resistance elements in water and sediment samples along a defined pristine-urban-agricultural river gradient from before and after the flood.

They will also compare antibiotics and metals in water and sediment samples along a defined pristine-urban-agricultural river gradient and examine the correlation with antibiotic resistance genes from before and after the flood.

"We believe our research will have vital implications for the development of effective policy and management practices to prolong the useful lifespan of antibiotics critical to human and animal health," Pruden said.

Emily Lipscomb, of Swanton, Md., an NSF graduate research fellow, will help carry out the project along with assistance from undergraduate students alongside the trio of faculty leading this work.

The College of Engineering ( at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Related Links
• New microfluidic chip can help identify unwanted particles in water and food (

• Amy Pruden to spearhead $250,000 study on the building plumbing microbiome (

• Virginia Tech engineer identifies pollution as a new concern for antibiotic resistance (

This story can be found on the Virginia Tech News website:

Lynn A. Nystrom | VT News
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>