Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study by Virginia Tech engineer focuses on antibiotic resistance caused by environmental factors

21.01.2014
The World Health Organization and the Center for Disease Control has recognized antibiotic resistance "as a critical health challenge of our time," said Amy Pruden (http://www.cee.vt.edu/people/pruden.html), a Virginia Tech environmental engineer who is credited with pioneering the concept of antibiotic resistance genes as environmental pollutants.

Pruden said reducing the spread of antibiotic resistance is a critical measure needed to prolong the effectiveness of currently available antibiotics. This is important since "new drug discovery can no longer keep pace with emerging antibiotic-resistant infections," Pruden said.

Pruden is a 2006 National Science Foundation CAREER award recipient as well as a 2007 Presidential Early Career Award in Science and Engineering honoree.

Pruden's unique expertise in characterizing environmental sources and pathways of antibiotic resistance has garnered her as lead of a new NSF RAPID grant to study the recent Colorado flood's effect on antibiotic resistance genes.

She will work with Mazddak Arabi of Colorado State University and Diana Aga of the University of Buffalo on the project that will improve the understanding of the role the watershed processes play in disseminating resistance.

For more than 10 years, this research team has monitored the watershed of the South Platte River Basin, southwest of Denver. "We have already generated a robust data set of antibiotic resistance genes and antibiotics, as well as a unique interdisciplinary watershed-scale approach for characterizing the land-use on their distribution," Pruden explained.

The recent Colorado flooding occurred during the week of Sept. 9, 2013, with flood waters affecting 17 counties over a spread of 200 miles north to south, transporting enormous loads of sediment and transforming the semi-arid landscape of the Front Range of Colorado.

When an antibiotic is consumed, researchers have learned that up to 90 percent passes through a body without metabolizing. This means the drugs can leave the body almost intact through normal bodily functions.

In the case of agricultural areas, excreted antibiotics can then enter stream and river environments through a variety of ways, including discharges from animal feeding operations, fish hatcheries, and nonpoint sources such as the flow from fields where manure or biosolids have been applied. Water filtered through wastewater treatment plants may also contain used antibiotics.

Consequently, these releases become "potential sources of antibiotic resistance genes," said Pruden.

The overall goal of their new research grant is to take advantage of the knowledge gained from the flooding in Colorado to help clarify what mechanisms control the fate and transport of antibiotic resistance genes originating from wastewater treatment plants and animal feeding operations in the watershed.

"Our overarching hypothesis is that two main mechanisms drive antibiotic resistance gene dissemination: selection by antibiotics and/or metals and the transport via physical processes such as sediment transport," Pruden said.

Their method will be to compare the antibiotic resistance elements in water and sediment samples along a defined pristine-urban-agricultural river gradient from before and after the flood.

They will also compare antibiotics and metals in water and sediment samples along a defined pristine-urban-agricultural river gradient and examine the correlation with antibiotic resistance genes from before and after the flood.

"We believe our research will have vital implications for the development of effective policy and management practices to prolong the useful lifespan of antibiotics critical to human and animal health," Pruden said.

Emily Lipscomb, of Swanton, Md., an NSF graduate research fellow, will help carry out the project along with assistance from undergraduate students alongside the trio of faculty leading this work.

The College of Engineering (http://www.eng.vt.edu/) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Related Links
• New microfluidic chip can help identify unwanted particles in water and food (http://www.vtnews.vt.edu/articles/2013/07/070113-engineering-microfluidchip.html)

• Amy Pruden to spearhead $250,000 study on the building plumbing microbiome (http://www.vtnews.vt.edu/articles/2012/11/110112-engineering-prudenstudyplumbingmicrobiome.html)

• Virginia Tech engineer identifies pollution as a new concern for antibiotic resistance (http://www.vtnews.vt.edu/articles/2011/01/010511-engineering-pruden.html)

This story can be found on the Virginia Tech News website:
http://www.vtnews.vt.edu/articles/2014/01/012114-engineering-amyprudenantibioticresistance.html

Lynn A. Nystrom | VT News
Further information:
http://www.vt.edu
http://www.eng.vt.edu/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>