Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study unveils new approach to treating brittle bone disease

05.05.2014

Researchers at Baylor College of Medicine have identified a new approach to treating brittle bone disease, a congenital disorder that results in fragile bones that break easily.

The study, published in the current issue of the journal Nature Medicine, showed that excessive activity of an important signaling protein in the matrix of the bone called transforming growth factor beta is associated with the cause of the disease.

"There are many genetic causes of brittle bone disease in children and adults," said Dr. Brendan Lee, professor of molecular and human genetics at Baylor and a Howard Hughes Medical Institute investigator. "We have discovered many of them but clinicians still cannot easily distinguish the different forms."

Lee said the new study suggested that there may be common mechanisms that cause the decreased quality and quantity of bone in these different forms.

"This identified an important concept in bone disease that while many different genetic mutations can affect the proteins in the bone matrix (like collagen) they act in a common pathway to cause the bone disease – that is they affect how signaling proteins called transforming growth factor beta (TGF) are delivered to cells in the bone," said Lee. "We now have a deeper understanding for how genetic mutations that affect collagen and collagen processing enzymes cause weak bones."

Collagen is the most common protein in the human body, and the four most common types are found in different types of tissues including bone, cartilage, blood vessels, and kidney.

In animal studies, Lee and his colleagues showed that blockade of the TGF proteins using an antibody could restore the quantity of bone in mice with different forms of brittle bone disease.

"This treatment appears even more effective than other existing approaches," said Lee.

There are currently drugs in development to block this pathway in humans, so eventually the work can be translated into human studies, he said.

Existing approaches revolve around symptom management such as prevention of bone fractures, physical therapy and bone strengthening drugs, not necessarily medications to target the underlying cause of the disease, he said.

The study is novel because it shows a personalized approach to more effective treatment patients with these forms of brittle bone disease.

"We hope this approach will also be useful in more common forms of osteoporosis," said Lee.

###

Lee is also co-director of the Rolanette and Berdon Lawrence Bone Disease Program of Texas, a collaboration of Baylor, The University of Texas MD Anderson Cancer Foundation and the Center for Skeletal Medicine and Biology at Baylor, a member of the prestigious Institute of Medicine and founder and director of the Skeletal Dysplasia Clinic at Texas Children's Hospital.

Co-authors on the report include Ingo Grafe, Tao Yang, Stefanie Alexander, Erica Homan, Caressa Lietman, Ming Ming Jiang, Terry Bertin, Elda Munivez, Yuqing Chen, Brian Dawson, all of Baylor; Yoshihiro Ishikawa and Hans Peter Bächinger of Oregon Health and Science University in Portland, Mary Ann Weis and David Eyre of the University of Washington in Seattle; T Kuber Sampath of the Genzyme Research Center in Massachusetts and Catherine Ambrose of the University of Texas Health Science Center at Houston.

Funding for this work was provided by the German Research Foundation/Deutsche Forschungsgemeinschaft, the Osteogenesis Imperfecta Foundation, Shriners Hospitals for Children, the Howard Hughes Medical Institute, and the National Institutes of Health.

Glenna Picton | Eurek Alert!
Further information:
http://www.bcm.edu

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>