Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study unveils new approach to treating brittle bone disease

05.05.2014

Researchers at Baylor College of Medicine have identified a new approach to treating brittle bone disease, a congenital disorder that results in fragile bones that break easily.

The study, published in the current issue of the journal Nature Medicine, showed that excessive activity of an important signaling protein in the matrix of the bone called transforming growth factor beta is associated with the cause of the disease.

"There are many genetic causes of brittle bone disease in children and adults," said Dr. Brendan Lee, professor of molecular and human genetics at Baylor and a Howard Hughes Medical Institute investigator. "We have discovered many of them but clinicians still cannot easily distinguish the different forms."

Lee said the new study suggested that there may be common mechanisms that cause the decreased quality and quantity of bone in these different forms.

"This identified an important concept in bone disease that while many different genetic mutations can affect the proteins in the bone matrix (like collagen) they act in a common pathway to cause the bone disease – that is they affect how signaling proteins called transforming growth factor beta (TGF) are delivered to cells in the bone," said Lee. "We now have a deeper understanding for how genetic mutations that affect collagen and collagen processing enzymes cause weak bones."

Collagen is the most common protein in the human body, and the four most common types are found in different types of tissues including bone, cartilage, blood vessels, and kidney.

In animal studies, Lee and his colleagues showed that blockade of the TGF proteins using an antibody could restore the quantity of bone in mice with different forms of brittle bone disease.

"This treatment appears even more effective than other existing approaches," said Lee.

There are currently drugs in development to block this pathway in humans, so eventually the work can be translated into human studies, he said.

Existing approaches revolve around symptom management such as prevention of bone fractures, physical therapy and bone strengthening drugs, not necessarily medications to target the underlying cause of the disease, he said.

The study is novel because it shows a personalized approach to more effective treatment patients with these forms of brittle bone disease.

"We hope this approach will also be useful in more common forms of osteoporosis," said Lee.

###

Lee is also co-director of the Rolanette and Berdon Lawrence Bone Disease Program of Texas, a collaboration of Baylor, The University of Texas MD Anderson Cancer Foundation and the Center for Skeletal Medicine and Biology at Baylor, a member of the prestigious Institute of Medicine and founder and director of the Skeletal Dysplasia Clinic at Texas Children's Hospital.

Co-authors on the report include Ingo Grafe, Tao Yang, Stefanie Alexander, Erica Homan, Caressa Lietman, Ming Ming Jiang, Terry Bertin, Elda Munivez, Yuqing Chen, Brian Dawson, all of Baylor; Yoshihiro Ishikawa and Hans Peter Bächinger of Oregon Health and Science University in Portland, Mary Ann Weis and David Eyre of the University of Washington in Seattle; T Kuber Sampath of the Genzyme Research Center in Massachusetts and Catherine Ambrose of the University of Texas Health Science Center at Houston.

Funding for this work was provided by the German Research Foundation/Deutsche Forschungsgemeinschaft, the Osteogenesis Imperfecta Foundation, Shriners Hospitals for Children, the Howard Hughes Medical Institute, and the National Institutes of Health.

Glenna Picton | Eurek Alert!
Further information:
http://www.bcm.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>