Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study unveils new approach to treating brittle bone disease

05.05.2014

Researchers at Baylor College of Medicine have identified a new approach to treating brittle bone disease, a congenital disorder that results in fragile bones that break easily.

The study, published in the current issue of the journal Nature Medicine, showed that excessive activity of an important signaling protein in the matrix of the bone called transforming growth factor beta is associated with the cause of the disease.

"There are many genetic causes of brittle bone disease in children and adults," said Dr. Brendan Lee, professor of molecular and human genetics at Baylor and a Howard Hughes Medical Institute investigator. "We have discovered many of them but clinicians still cannot easily distinguish the different forms."

Lee said the new study suggested that there may be common mechanisms that cause the decreased quality and quantity of bone in these different forms.

"This identified an important concept in bone disease that while many different genetic mutations can affect the proteins in the bone matrix (like collagen) they act in a common pathway to cause the bone disease – that is they affect how signaling proteins called transforming growth factor beta (TGF) are delivered to cells in the bone," said Lee. "We now have a deeper understanding for how genetic mutations that affect collagen and collagen processing enzymes cause weak bones."

Collagen is the most common protein in the human body, and the four most common types are found in different types of tissues including bone, cartilage, blood vessels, and kidney.

In animal studies, Lee and his colleagues showed that blockade of the TGF proteins using an antibody could restore the quantity of bone in mice with different forms of brittle bone disease.

"This treatment appears even more effective than other existing approaches," said Lee.

There are currently drugs in development to block this pathway in humans, so eventually the work can be translated into human studies, he said.

Existing approaches revolve around symptom management such as prevention of bone fractures, physical therapy and bone strengthening drugs, not necessarily medications to target the underlying cause of the disease, he said.

The study is novel because it shows a personalized approach to more effective treatment patients with these forms of brittle bone disease.

"We hope this approach will also be useful in more common forms of osteoporosis," said Lee.

###

Lee is also co-director of the Rolanette and Berdon Lawrence Bone Disease Program of Texas, a collaboration of Baylor, The University of Texas MD Anderson Cancer Foundation and the Center for Skeletal Medicine and Biology at Baylor, a member of the prestigious Institute of Medicine and founder and director of the Skeletal Dysplasia Clinic at Texas Children's Hospital.

Co-authors on the report include Ingo Grafe, Tao Yang, Stefanie Alexander, Erica Homan, Caressa Lietman, Ming Ming Jiang, Terry Bertin, Elda Munivez, Yuqing Chen, Brian Dawson, all of Baylor; Yoshihiro Ishikawa and Hans Peter Bächinger of Oregon Health and Science University in Portland, Mary Ann Weis and David Eyre of the University of Washington in Seattle; T Kuber Sampath of the Genzyme Research Center in Massachusetts and Catherine Ambrose of the University of Texas Health Science Center at Houston.

Funding for this work was provided by the German Research Foundation/Deutsche Forschungsgemeinschaft, the Osteogenesis Imperfecta Foundation, Shriners Hospitals for Children, the Howard Hughes Medical Institute, and the National Institutes of Health.

Glenna Picton | Eurek Alert!
Further information:
http://www.bcm.edu

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

European particle-accelerator community publishes the first industry compendium

26.04.2018 | Physics and Astronomy

Multifunctional bacterial microswimmer able to deliver cargo and destroy itself

26.04.2018 | Life Sciences

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>