Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Provides Better Understanding of Water’s Freezing Behavior at Nanoscale

23.05.2013
The results of a new study led by George Washington University Professor Tianshu Li provide direct computational evidence that nucleation of ice in small droplets is strongly size-dependent, an important conclusion in understanding water’s behavior at the nanoscale.

The formation of ice at the nanoscale is a challenging, basic scientific research question whose answer also has important implications for climate research and other fields.

The crystallization of ice from supercooled water is generally initiated by a process called nucleation. Because of the speed and size of nucleation—it occurs within nanoseconds and nanometers—probing it by experiment or simulation is a major challenge.

By using an advanced simulation method, Dr. Li and his collaborators, Davide Donadio of Germany’s Max Planck Institute for Polymer Research, and Giulia Galli, a professor of chemistry and physics at the University of California, Davis, were able to demonstrate that nucleation of ice is substantially suppressed in nano-sized water droplets. Their paper, “Ice nucleation at the nanoscale probes no man’s land of water,” was published today in the journal Nature Communications.

“A current challenge for scientists is to unveil water’s behaviors below -35 degrees Celsius and above -123 degrees Celsius, a temperature range that chemists call ‘no man’s land,’ ” said Dr. Li, a professor of civil and environmental engineering at the George Washington University School of Engineering and Applied Science. “Fast ice crystallization can hardly be avoided at such low temperatures, so maintaining water in a liquid state is a major experimental challenge.”

Since the frequency of ice nucleation scales with the volume of water, one of the strategies for overcoming this kinetic barrier is to reduce the volume of water. However, this raises the question of whether water at the nanoscale can still be regarded as equivalent to bulk water, and if not, where that boundary would be.

The team’s results answer this question. By showing that the ice nucleation rate at the nanoscale can be several orders of magnitude smaller than that of bulk water, they demonstrate that water at such a small scale can no longer be considered bulk water.

“We also predict where this boundary would reside at various temperatures,” Dr. Li said. The boundary refers to the size of the droplet where the difference vanishes. The team’s findings will help with the interpretation of molecular beam experiments and set the guidelines for experiments that probe the ‘no man’s land’ of water.

The results are also of importance in atmospheric science, as they may improve the climate model of the formation of ice clouds in upper troposphere, which effectively scatter incoming solar radiation and prevent earth from becoming overheated by the sun. The results have important implications in climate control research, too. One of the current debates is whether the formation of ice occurs near the surface or within the micrometer-sized droplets suspended in clouds. If it is the former, effective engineering approaches may be able to be taken to tune the surface tension of water so that the ice crystallization rate can be controlled.

“Our results, indeed, support the hypothesis of surface crystallization of ice in microscopic water droplets,” Dr. Li said. “Obtaining the direct evidence is our next step.”

GW School of Engineering and Applied Science
GW’s School of Engineering and Applied Science prepares engineers and applied scientists to address society’s technological challenges by offering outstanding undergraduate, graduate and professional educational programs, and by providing innovative, fundamental and applied research activities. The school has five academic departments, 11 research centers, 90 faculty and more than 2,500 undergraduate and graduate students. Core areas of academic excellence include biomedical engineering, cybersecurity, high performance computing, nanotechnologies, robotics and transportation safety engineering.

Kurtis Hiatt | Newswise
Further information:
http://www.gwu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>