Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study uncovers novel genetic variation linked to increased risk of sudden cardiac arrest

01.07.2011
First study of genome-wide significance shows variation in the BAZ2B gene linked to increased risk of the heart disorder that kills more than 250,000 in the U.S. and 5 million worldwide each year

A study by a global consortium of physician-scientists has identified a genetic variation that may predispose people to double the risk of having a sudden cardiac arrest, a disorder that gives little warning and is fatal in about 95 percent of cases. Although previous, smaller studies have identified some genes with a potential association with sudden cardiac arrest, this is the first study large enough to enable scientists to apply results to the general population. Findings are published today by the Public Library of Science (PloS Genetics).

“We are at the beginning of unraveling the mystery of what causes sudden cardiac arrest and how to prevent it,” said senior author Sumeet S. Chugh, MD, associate director of the Cedars-Sinai Heart Institute and a specialist in cardiac electrophysiology. “If we wait until someone has a sudden cardiac arrest, it is usually too late for treatment. That is why knowing who is genetically susceptible is so important.”

Unlike heart attacks (myocardial infarction), which are typically caused by clogged coronary arteries reducing blood flow to the heart muscle, sudden cardiac arrest is the result of defective electrical impulses. Patients may have little or no warning, and the disorder usually causes nearly instantaneous death. Every year, 250,000 to 300,000 people in the U.S. and up to 5 million worldwide die from sudden cardiac arrest.

Despite years of significant advances in emergency medicine and resuscitation, just five percent of those who suffer sudden cardiac arrest survive. For patients at known risk for this or other heart rhythm abnormalities, an implantable cardioverter-defibrillator (ICD) may be placed in the chest or abdomen to detect faulty electrical impulses and provide a shock to return normal rhythm. Better genetic predictors of risk may someday enable the accurate prediction of which patients are most likely to benefit from costly ICD therapy.

The discovery came from a genome-wide association study, which examines the entire set of human genes to detect possible links between genetic variations and specific conditions or diseases. In this study, researchers from the Cedars-Sinai Heart Institute, Johns Hopkins University School of Medicine, along with researchers from the National Institutes of Health, Harvard University, Wake Forest University School of Medicine, Oregon Health and Science University, Finland, Canada and the Netherlands compared the genetic makeup of 4,402 subjects who had experienced sudden cardiac arrest to the DNA of 30,000 control subjects who had no history of the disorder.

Based on a comparison of the two groups, a genetic variation in the BAZ2B gene was found to be associated with a significantly increased risk of sudden cardiac arrest.

“If you have this genetic variation in your DNA, it appears that you may have a two-fold higher likelihood of sudden cardiac arrest,” said Chugh, the Pauline and Harold Price Chair in Cardiac Electrophysiology Research.

The researchers also studied the link between other genetic variations that account for EKG abnormalities and were able to pinpoint several that can also be used for improving the prediction of sudden cardiac arrest in the community.

The Cedars-Sinai Heart Institute is internationally recognized for outstanding heart care built on decades of innovation and leading-edge research. From advanced diagnostics to catheter-based and surgical treatment of complex heart problems to the training of the heart specialists of tomorrow; and research that is deepening medical knowledge and practice, the Cedars-Sinai Heart Institute is known around the world for excellence and innovations.

Sally Stewart | Cedars-Sinai News
Further information:
http://www.cshs.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>