Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study uncovers novel genetic variation linked to increased risk of sudden cardiac arrest

01.07.2011
First study of genome-wide significance shows variation in the BAZ2B gene linked to increased risk of the heart disorder that kills more than 250,000 in the U.S. and 5 million worldwide each year

A study by a global consortium of physician-scientists has identified a genetic variation that may predispose people to double the risk of having a sudden cardiac arrest, a disorder that gives little warning and is fatal in about 95 percent of cases. Although previous, smaller studies have identified some genes with a potential association with sudden cardiac arrest, this is the first study large enough to enable scientists to apply results to the general population. Findings are published today by the Public Library of Science (PloS Genetics).

“We are at the beginning of unraveling the mystery of what causes sudden cardiac arrest and how to prevent it,” said senior author Sumeet S. Chugh, MD, associate director of the Cedars-Sinai Heart Institute and a specialist in cardiac electrophysiology. “If we wait until someone has a sudden cardiac arrest, it is usually too late for treatment. That is why knowing who is genetically susceptible is so important.”

Unlike heart attacks (myocardial infarction), which are typically caused by clogged coronary arteries reducing blood flow to the heart muscle, sudden cardiac arrest is the result of defective electrical impulses. Patients may have little or no warning, and the disorder usually causes nearly instantaneous death. Every year, 250,000 to 300,000 people in the U.S. and up to 5 million worldwide die from sudden cardiac arrest.

Despite years of significant advances in emergency medicine and resuscitation, just five percent of those who suffer sudden cardiac arrest survive. For patients at known risk for this or other heart rhythm abnormalities, an implantable cardioverter-defibrillator (ICD) may be placed in the chest or abdomen to detect faulty electrical impulses and provide a shock to return normal rhythm. Better genetic predictors of risk may someday enable the accurate prediction of which patients are most likely to benefit from costly ICD therapy.

The discovery came from a genome-wide association study, which examines the entire set of human genes to detect possible links between genetic variations and specific conditions or diseases. In this study, researchers from the Cedars-Sinai Heart Institute, Johns Hopkins University School of Medicine, along with researchers from the National Institutes of Health, Harvard University, Wake Forest University School of Medicine, Oregon Health and Science University, Finland, Canada and the Netherlands compared the genetic makeup of 4,402 subjects who had experienced sudden cardiac arrest to the DNA of 30,000 control subjects who had no history of the disorder.

Based on a comparison of the two groups, a genetic variation in the BAZ2B gene was found to be associated with a significantly increased risk of sudden cardiac arrest.

“If you have this genetic variation in your DNA, it appears that you may have a two-fold higher likelihood of sudden cardiac arrest,” said Chugh, the Pauline and Harold Price Chair in Cardiac Electrophysiology Research.

The researchers also studied the link between other genetic variations that account for EKG abnormalities and were able to pinpoint several that can also be used for improving the prediction of sudden cardiac arrest in the community.

The Cedars-Sinai Heart Institute is internationally recognized for outstanding heart care built on decades of innovation and leading-edge research. From advanced diagnostics to catheter-based and surgical treatment of complex heart problems to the training of the heart specialists of tomorrow; and research that is deepening medical knowledge and practice, the Cedars-Sinai Heart Institute is known around the world for excellence and innovations.

Sally Stewart | Cedars-Sinai News
Further information:
http://www.cshs.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

21.02.2018 | Health and Medicine

First line of defence against influenza further decoded

21.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>