Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study suggests winter babies face socioeconomic disadvantages

09.01.2009
Many of us may often feel that we've been born under an unlucky sign. Now, new research by a pair of University of Notre Dame economists suggests that some of us are, in fact, born in an unlucky season.

In their paper, Kasey Buckles and Daniel Hungerman point out that a large body of previous research consistently has found that people born in December, January and February are, on average, less educated, less intelligent, less healthy and lower paid than people born in other seasons.

A variety of explanations have been suggested for this phenomenon, including such social and natural factors as compulsory schooling laws, changes in climate and exposure to illness. However, the exact cause of the association between season of birth and later outcomes has never been precisely clear.

In the new study, Buckles and Hungerman analyzed U.S census data and birth certificates to determine if the typical woman giving birth in winter is any different from the typical woman giving birth at other times of the year.

They discovered that babies born in the winter are more likely to have mothers who are unmarried, who are teenagers or who lack a high school diploma. One explanation for the seasonal patterns in births is that summer's high temperatures inhibit sperm production. This seems to affect lower socioeconomic status women more adversely, which could explain why there are relatively fewer births to these women in the spring and early summer.

Buckles and Hungerman also point out that there could be a "prom babies" effect, with winter births occurring nine moths after end-of-year school celebrations.

The researchers also note that survey data has shown that women consider winter the least desirable season in which to give birth. Buckles and Hungerman suggest that women who are wealthier and more educated are better able to time their births to more desirable seasons.

Kasey Buckles | EurekAlert!
Further information:
http://www.nd.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>