Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study suggests winter babies face socioeconomic disadvantages

09.01.2009
Many of us may often feel that we've been born under an unlucky sign. Now, new research by a pair of University of Notre Dame economists suggests that some of us are, in fact, born in an unlucky season.

In their paper, Kasey Buckles and Daniel Hungerman point out that a large body of previous research consistently has found that people born in December, January and February are, on average, less educated, less intelligent, less healthy and lower paid than people born in other seasons.

A variety of explanations have been suggested for this phenomenon, including such social and natural factors as compulsory schooling laws, changes in climate and exposure to illness. However, the exact cause of the association between season of birth and later outcomes has never been precisely clear.

In the new study, Buckles and Hungerman analyzed U.S census data and birth certificates to determine if the typical woman giving birth in winter is any different from the typical woman giving birth at other times of the year.

They discovered that babies born in the winter are more likely to have mothers who are unmarried, who are teenagers or who lack a high school diploma. One explanation for the seasonal patterns in births is that summer's high temperatures inhibit sperm production. This seems to affect lower socioeconomic status women more adversely, which could explain why there are relatively fewer births to these women in the spring and early summer.

Buckles and Hungerman also point out that there could be a "prom babies" effect, with winter births occurring nine moths after end-of-year school celebrations.

The researchers also note that survey data has shown that women consider winter the least desirable season in which to give birth. Buckles and Hungerman suggest that women who are wealthier and more educated are better able to time their births to more desirable seasons.

Kasey Buckles | EurekAlert!
Further information:
http://www.nd.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>