Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Suggests New Treatment Target for Deadly Brain Tumors

02.08.2012
A study by UT Southwestern Medical Center researchers published online today in Nature reveals new insight into why the most common, deadly kind of brain tumor in adults recurs and identifies a potential target for future therapies.

Glioblastoma multiforme (GBM) currently is considered incurable. Despite responding to initial therapy, the cancer almost always returns. GBM is a fast-growing, malignant brain tumor that occurred in 15 percent of the estimated 22,000 Americans diagnosed with brain and nervous system tumors in 2010. The median survival rate is about 15 months, according to the National Cancer Institute.

“We identified a subset of brain tumor cells that are slower growing or remain at rest, and appear to be the source of cancer recurrence after standard therapy in which the drug temozolomide is given to stop the tumor’s growth,” said Dr. Luis Parada, chairman of developmental biology and director of the Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration. “Current therapy targets fast-growing tumor cells but not those responsible for new tumors. To the best of our knowledge, this is the first identification of a cancer stem-like cell in a spontaneously forming tumor inside a mammal.”

Using a genetically engineered mouse model of GBM, the researchers found that the resting tumor cells act more like stem cells – the non-cancerous cells the body uses to repair and replenish itself – which exist in a resting state until needed, he explained.

The existence of cancer stem cells in solid tumors remains controversial, Dr. Parada said, with some scientists in the field taking the concept for granted and others rejecting it outright. In addition, the definition of a cancer stem cell is a moving target, hence the use of the term stem-like cell in this study, he said.

“We are trying to better understand these cells. The important point is that we now are faced with technical obstacles, not conceptual ones,” said Dr. Parada.

Other UT Southwestern researchers involved include lead author and former postdoctoral student of developmental biology Dr. Jian Chen, who is now a senior scientist at OriGene Technologies in Wuxi, China; Yanjiao Li, a research associate of developmental biology; Dr. Tzong-Schiue Yu, a former graduate student of developmental biology and pediatrics; Dr. Renée M. McKay, assistant professor of developmental biology; Dr. Dennis K. Burns, professor of pathology; and Dr. Steven G. Kernie, a former associate professor of pediatrics and developmental biology. Drs. Kernie and Yu are now at Columbia University Medical Center.

The study was supported by grants from the National Institutes of Health, the Cancer Prevention and Research Institute of Texas, the Goldhirsh Foundation, and the James S. McDonnell Foundation.

This news release is available on our World Wide Web home page at
www.utsouthwestern.edu/home/news/index.html
To automatically receive news releases from UT Southwestern via email,
subscribe at www.utsouthwestern.edu/receivenews

Deborah Wormser | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>