Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study suggests stem cells sabotage their own DNA to produce new tissues

16.02.2010
A new study from the Ottawa Hospital Research Institute (OHRI) and the University of Ottawa suggests that stem cells intentionally break their own DNA as a way of regulating tissue development. The study, published in Proceedings of the National Academy of Science (PNAS), could dramatically change how researchers think about tissue development, stem cells and cancer.

Human cells contain 46 strands of DNA that code for all our genes. Certain chemicals and UV light can break these strands into pieces, a process that has traditionally been considered a bad thing, leading to cell death or diseases such as cancer if the damage is not repaired quickly.

The new research, led by Dr. Lynn Megeney, shows for the first time that stem cells will intentionally cut and then repair their own DNA as a mechanism of activating genes that promote the development of new tissues.

The project started as an attempt to understand how stem cells give rise to new muscle fibres. In 2002, Dr. Megeney and his team discovered that this process of producing new muscle was somehow connected to another important process called programmed cell death, which the body uses to get rid of unwanted cells. When they blocked or removed a key death-promoting protein called caspase 3, they found that stem cells stopped producing new muscle fibres.

"This discovery was very controversial at the time, but dozens of research groups have now reported that cell death proteins control the maturation process of most stem cell types," says Dr. Megeney. "In the last few years, the big mystery has been how cell death proteins manage this complex process."

Now in the 2010 study Dr. Megeney and his team believe they have solved the mystery. They have discovered that the novel effect of caspase 3 in stem cells is related to its ability to activate another protein that cuts up the cell's DNA (called caspase-activated DNase) and has also traditionally been associated with programmed cell death. When they blocked this DNA-cutting protein, they also blocked muscle development. They also showed that when the DNA cutting occurs at a key gene known to promote muscle development, it activates that gene and induces the development of new muscle.

"Our research suggests that when a gene is damaged, it can actually increase the expression of that gene, as long as the damage is repaired quickly. This is a novel way for a gene to become activated," says Dr. Megeney. "We've shown that this process is crucial for the development of new muscle tissue, but we believe it may be important for the development of most other tissues as well."

The discovery has important implications for a number of areas. It could help researchers develop better ways to activate stem cells, so that they can produce new tissues for therapeutic purposes. It also suggests that DNA mutations, which can contribute to a variety of diseases, may initially occur as a result of a normal cellular process. And it has implications for researchers developing therapies that inhibit programmed cell death, suggesting that such therapies may also inhibit normal tissue development.

Dr. Lynn Megeney is a Senior Scientist at the OHRI's Sprott Centre for Stem Cell Research, a Professor of Medicine at the University of Ottawa and the Mach Gaensslen Chair in Cardiac Research. Other authors on the paper include Brain D. Larsen, Dr. Shravanti Rampalli, Leanne E. Burns, Steve Brunette and Dr. F. Jeffrey Dilworth. This work was supported by the Canadian Institutes of Health Research and the Muscular Dystrophy Association.

About the Ottawa Hospital Research Institute

The Ottawa Hospital Research Institute (OHRI) is the research arm of The Ottawa Hospital and is an affiliated institute of the University of Ottawa, closely associated with the University's Faculties of Medicine and Health Sciences. The OHRI includes more than 1,500 scientists, clinical investigators, graduate students, postdoctoral fellows and staff conducting research to improve the understanding, prevention, diagnosis and treatment of human disease. www.ohri.ca

Media Contact

Jennifer Paterson
Director, Communications and Public Relations
Ottwa Hospital Research Institute
613-798-5555 ext. 73325
jpaterson@ohri.ca

Jennifer Paterson | EurekAlert!
Further information:
http://www.ohri.ca

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>