Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests repurposing anti-depressant medication to target medulloblastoma

25.08.2014

An international research team reports in Nature Medicine a novel molecular pathway that causes an aggressive form of medulloblastoma, and suggests repurposing an anti-depressant medication to target the new pathway may help combat one of the most common brain cancers in children.

The multi-institutional group, led by scientists at Cancer and Blood Diseases Institute (CBDI) at Cincinnati Children's Hospital Medical Center, publish their results in the journal's online edition on Aug. 24. The researchers suggest their laboratory findings in mouse models of the disease could lead to a more targeted and effective molecular therapy that would also reduce the harmful side effects of current treatments, which include chemotherapy, radiation or surgery.

"Although current treatments improve survival rates, patients suffer severe side effects and relapse tumors carry mutations that resist treatment," said lead investigator Q. Richard Lu, PhD, scientific director of the Brain Tumor Center, part of the CBDI at Cincinnati Children's. "This underscores an urgent need for alternative targeted therapies, and we have identified a potent tumor suppressor that could help a subset of patients with an aggressive form of medulloblastoma."

Using genetically-engineered mice to model human medulloblastoma, the authors identified a gene called GNAS that encodes a protein called Gsa. Gsa kicks off a signaling cascade that researchers found suppresses the initiation of an aggressive form of medulloblastoma driven by a protein called Sonic hedgehog – considered one of the most important molecules in tissue formation and development.

The scientists used an anti-depressant medication called Rolipram – approved for behavioral therapy for use in Europe and Japan – to treat mice that were engineered not to express the GNAS gene. Lack of GNAS allowed aggressive formation of medulloblastoma tumors in neural progenitor cells of the GNAS mutant mice.

Rolipram treatment in the mice elevated levels of a molecule called cAMP, which restored the GNAS-Gsa pathway's tumor suppression function. This caused the tumors to shrink and subside. The study also suggests that elevating cAMP levels in cells enhances the potency of Sonic hedgehog inhibitors, currently being tested in clinical trials to fight tumor growth.

The scientists stressed that a significant amount of additional research is needed before their findings could become directly relevant to clinical treatment. The authors also caution that the effect of raising cAMP levels may depend on the type of cancer, and that laboratory results in mice do not always translate uniformly to humans.

###

Collaborating on the study with Dr. Lu was first author, Xuelian He (MD, a postdoctoral fellow), of the CBDI at Cincinnati Children's and the West China Second Hospital, Sichuan University, in Chengdu, China.

Other collaborating institutions include: The Hospital for Sick Children, University of Toronto, Toronto; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea; the German Cancer Research Center, Heidelberg, Germany; the National Institute of Diabetes and Digestive and Kidney Diseases (NIH); Department of Neurology, Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston; St. Jude Children's Research Hospital, Memphis; departments of Pediatrics, Anatomy and Neurobiology, Washington University School of Medicine, St Louis; Tumor Development Program, Sanford-Burnham Medical Research Institute, La Jolla, Calif.

Funding support came in part from the National Institutes of Health (R01NS078092, R01NS075243) and the Canadian Institutes of Health Research.

About Cincinnati Children's:

Cincinnati Children's Hospital Medical Center ranks third in the nation among all Honor Roll hospitals in U.S. News and World Report's 2014 Best Children's Hospitals. It is also ranked in the top 10 for all 10 pediatric specialties. Cincinnati Children's, a non-profit organization, is one of the top three recipients of pediatric research grants from the National Institutes of Health, and a research and teaching affiliate of the University of Cincinnati College of Medicine. The medical center is internationally recognized for improving child health and transforming delivery of care through fully integrated, globally recognized research, education and innovation. Additional information can be found at http://www.cincinnatichildrens.org. Connect on the Cincinnati Children's blog, via Facebook and on Twitter.

Nick Miller | Eurek Alert!

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>