Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests repurposing anti-depressant medication to target medulloblastoma

25.08.2014

An international research team reports in Nature Medicine a novel molecular pathway that causes an aggressive form of medulloblastoma, and suggests repurposing an anti-depressant medication to target the new pathway may help combat one of the most common brain cancers in children.

The multi-institutional group, led by scientists at Cancer and Blood Diseases Institute (CBDI) at Cincinnati Children's Hospital Medical Center, publish their results in the journal's online edition on Aug. 24. The researchers suggest their laboratory findings in mouse models of the disease could lead to a more targeted and effective molecular therapy that would also reduce the harmful side effects of current treatments, which include chemotherapy, radiation or surgery.

"Although current treatments improve survival rates, patients suffer severe side effects and relapse tumors carry mutations that resist treatment," said lead investigator Q. Richard Lu, PhD, scientific director of the Brain Tumor Center, part of the CBDI at Cincinnati Children's. "This underscores an urgent need for alternative targeted therapies, and we have identified a potent tumor suppressor that could help a subset of patients with an aggressive form of medulloblastoma."

Using genetically-engineered mice to model human medulloblastoma, the authors identified a gene called GNAS that encodes a protein called Gsa. Gsa kicks off a signaling cascade that researchers found suppresses the initiation of an aggressive form of medulloblastoma driven by a protein called Sonic hedgehog – considered one of the most important molecules in tissue formation and development.

The scientists used an anti-depressant medication called Rolipram – approved for behavioral therapy for use in Europe and Japan – to treat mice that were engineered not to express the GNAS gene. Lack of GNAS allowed aggressive formation of medulloblastoma tumors in neural progenitor cells of the GNAS mutant mice.

Rolipram treatment in the mice elevated levels of a molecule called cAMP, which restored the GNAS-Gsa pathway's tumor suppression function. This caused the tumors to shrink and subside. The study also suggests that elevating cAMP levels in cells enhances the potency of Sonic hedgehog inhibitors, currently being tested in clinical trials to fight tumor growth.

The scientists stressed that a significant amount of additional research is needed before their findings could become directly relevant to clinical treatment. The authors also caution that the effect of raising cAMP levels may depend on the type of cancer, and that laboratory results in mice do not always translate uniformly to humans.

###

Collaborating on the study with Dr. Lu was first author, Xuelian He (MD, a postdoctoral fellow), of the CBDI at Cincinnati Children's and the West China Second Hospital, Sichuan University, in Chengdu, China.

Other collaborating institutions include: The Hospital for Sick Children, University of Toronto, Toronto; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea; the German Cancer Research Center, Heidelberg, Germany; the National Institute of Diabetes and Digestive and Kidney Diseases (NIH); Department of Neurology, Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston; St. Jude Children's Research Hospital, Memphis; departments of Pediatrics, Anatomy and Neurobiology, Washington University School of Medicine, St Louis; Tumor Development Program, Sanford-Burnham Medical Research Institute, La Jolla, Calif.

Funding support came in part from the National Institutes of Health (R01NS078092, R01NS075243) and the Canadian Institutes of Health Research.

About Cincinnati Children's:

Cincinnati Children's Hospital Medical Center ranks third in the nation among all Honor Roll hospitals in U.S. News and World Report's 2014 Best Children's Hospitals. It is also ranked in the top 10 for all 10 pediatric specialties. Cincinnati Children's, a non-profit organization, is one of the top three recipients of pediatric research grants from the National Institutes of Health, and a research and teaching affiliate of the University of Cincinnati College of Medicine. The medical center is internationally recognized for improving child health and transforming delivery of care through fully integrated, globally recognized research, education and innovation. Additional information can be found at http://www.cincinnatichildrens.org. Connect on the Cincinnati Children's blog, via Facebook and on Twitter.

Nick Miller | Eurek Alert!

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>