Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests physicians wait longer for brain recovery after hypothermia Rx in cardiac arrest

15.11.2010
Heart experts at Johns Hopkins say that physicians might be drawing conclusions too soon about irreversible brain damage in patients surviving cardiac arrest whose bodies were for a day initially chilled into a calming coma.

The chilling, known as therapeutic hypothermia, is one of the few medical practices known to improve brain recovery after sudden heart stoppages, with brain recovery usually assessed three days after the incident.

The therapy, recommended in American Heart Association treatment guidelines since 2005, is thought to work by slowing down the body's metabolism, delaying the brain's need for oxygen until the heart, lungs and kidneys can recover.

Senior study investigator and cardiologist Nisha Chandra-Strobos, M.D., says large, multicenter studies will be required before experts can definitively suggest changes to current standards of care. However, early indications are that "we may need to be much more deliberate in allowing the brain to recover before adjudicating on the neurological benefits of therapeutic hypothermia, as there is obviously more variability in patient response to treatment than previously thought.

"It is definitely a clinical situation about which we have much more to learn in order to maximize care for our cardiac arrest patients," says Chandra-Strobos, a professor at the Johns Hopkins University School of Medicine and its Heart and Vascular Institute, where she also serves as director of cardiology at Johns Hopkins Bayview Medical Center.

Reporting on a study of 47 men and women treated for cardiac arrest at Johns Hopkins Bayview, lead study investigator and internist Shaker Eid, M.D., says their results "show that people who have been immediately treated with hypothermia are more likely to wake up and are taking longer to wake up, as opposed to those who do not receive such treatment. "Hypothermia patients are showing initial signs of renewed brain activity five and sometimes even seven days after suffering cardiac arrest," says Eid, who is scheduled to present the team's findings Nov. 13 at the American Heart Association's (AHA) annual Scientific Sessions in Chicago.

"Physicians and family members may need to wait longer than the traditional three days before making irrevocable decisions about brain function recovery and possible withdrawal of care," says Eid, an assistant professor at Johns Hopkins. The Johns Hopkins study is believed to be the first timeline analysis of neurological recovery after hypothermia treatment in victims of cardiac arrest.

"An obvious concern in light of these results is that we may be withdrawing support prematurely in selected patients," says Chandra-Strobos. "The concern is valid; however, our clinical and study experience are re-assuring since most patients are observed and treated more than seven days." The average length of stay at Johns Hopkins Bayview for such patients is 13 days, which she says is more than adequate to allow for neurological recovery.

The chilling and coma therapy itself typically lasts less than 24 hours, and patients are slowly weaned off powerful sedatives and simultaneously warmed up to a normal body temperature of 37 degrees Celsius. Experts say that if an ambulance reaches an arrest victim shortly after they have collapsed, the patient can be chilled in the hospital emergency room or in the intensive care unit within a few hours to the desired temperature -- 33 degrees Celsius -- using a combination of cold intravenous solutions and "ice blankets," suits, vests or helmets.

Not all victims of cardiac arrest, they caution, are candidates for therapeutic hypothermia. According to Eid, the treatment works best when emergency personnel are by the side of the patient at the time of actual collapse and can start immediate CPR and restart the heart, usually with a combination of drugs and sometimes electrical shock from a defibrillator. The treatment is also more effective, he says, in such people if their initial collapse was brought on by an electrical disturbance in the heart, what is known as a ventricular fibrillation rhythm. More than 300,000 cardiac arrests occur outside of hospitals each year in the United States, with less than 8 percent of victims surviving their medical crisis with brain function intact, a statistic Chandra-Strobos calls "pitiful."

In the new study, the Johns Hopkins researchers monitored the 47 men and women treated with and without therapeutic hypothermia. More than half died in the hospital. However, survival rates were higher for those whose bodies were chilled than for those who were not. In seven survivors treated with hypothermia, more than half remained comatose three days after sedation was withdrawn, with only a third showing signs of renewed brain activity. By the fifth day, the numbers were reversed, with more than half showing signs of waking up and only a third remaining comatose. And after a week, one-third were fully alert and awake, while half showed signs of brain function returning.

This contrasts, the researchers say, with the 13 other survivors who were not candidates for therapeutic hypothermia. Almost half were immediately alert upon resuscitation, while the majority, 80 percent showed signs of brain awakening by day three, as commonly expected.

Experts say current neurologic evaluation guidelines, in place since 1985, state that by day three, decisions can be made about whether or not to withdraw care in the absence of renewed brain activity.

Funding for this study was provided by Johns Hopkins Bayview Medical Center.

In addition to Eid and Chandra-Strobos, other Hopkins researchers involved in this study were Skon Nazarian, B.Sc.; Devon Dobrosielski, Ph.D.; Scott Carey, B.Sc.; Joel Palachuvattil, M.Sc.; Romergryko Geocadin, M.D., Ph.D.; Rafael Llinas, M.D.; and Kerry Steward, Ed.D.

(Presentation title: A Paradigm Redefined, Time Course of Neurological Recovery Following Hypothermia Therapy Post Non-Traumatic Out-of-Hospital Cardiac Arrest.)

For additional information:
http://www.hopkinsheart.org/
http://www.hopkinsbayview.org/cardiology/faculty/chandra.html
http://www.hopkinsbayview.org/cims/clinicalstaff/eid.html

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>