Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study suggests new way of preventing diabetes-associated blindness


Reporting on their study with lab-grown human cells, researchers at The Johns Hopkins University and the University of Maryland say that blocking a second blood vessel growth protein, along with one that is already well-known, could offer a new way to treat and prevent a blinding eye disease caused by diabetes.

A summary of the study appears online May 25 in Proceedings of the National Academy of Sciences.

This image shows the blood vessels in the retina of a patient with proliferative diabetic retinopathy.

Credit: Wilmer Photography

The disease, diabetic retinopathy , is the most common cause of vision loss in working-age adults in the United States. Diabetic eye disease occurs when the normal blood vessels in the eye are replaced over time with abnormal, leaky, fragile blood vessels that leak fluid or bleed into the eye, damaging the light-sensitive retina and causing blindness. Forty to 45 percent of Americans with diabetes have diabetic retinopathy, according to the National Eye Institute.

Laser-sealing eye blood vessels can save central vision, but this often sacrifices peripheral and night vision, according to Akrit Sodhi, M.D., Ph.D. , an assistant professor of ophthalmology at the Johns Hopkins University School of Medicine. Several recently developed drugs -- bevacizumab, ranibizumab and aflibercept -- can help treat these blood vessels by blocking the action of VEGF, a so-called growth factor released as part of a chain of signals in response to low oxygen levels, which stimulates the growth of new, often abnormal, blood vessels. But studies have shown that although these drugs slow progression to proliferative diabetic retinopathy, it does not reliably prevent it.

Looking for an explanation, postdoctoral fellow Savalan Babapoor-Farrokhran, M.D., and Kathleen Jee, a student at the school of medicine who will begin her residency in ophthalmology at the Wilmer Eye Institute at Johns Hopkins next year, tested levels of VEGF in samples of fluid from the eye taken from healthy people, people with diabetes who did not have diabetic retinopathy and people with diabetic retinopathy of varying severity.

While levels of VEGF tended to be higher in those with proliferative diabetic retinopathy, some of their fluid had less VEGF than did the healthy participants. But even the low-VEGF fluid from patients with proliferative diabetic retinopathy stimulated blood vessel growth in lab-grown cells.

"The results suggested to us that although VEFG clearly plays an important role in blood vessel growth, it's not the only factor," Sodhi says.

A series of experiments in lab-grown human cells and mice revealed a second culprit, a protein called angiopoietin-like 4. When the researchers blocked the action of both VEGF and angiopoietin-like 4 in fluid from the eyes of people with proliferative diabetic retinopathy, it markedly reduced blood vessel growth in lab-grown cells.

If a drug can be found that safely blocks the second protein's action in patients' eyes, it might be combined with the anti-VEGF drugs to prevent many cases of proliferative diabetic retinopathy, Sodhi suggests.

The team is now investigating whether angiopoietin-like 4 might also play a role in other eye diseases, such as macular degeneration, which destroys the central portion of the retina.


Other authors on the paper are Brooks Puchner, Syed Junaid Hassan, Xiaoban Xin, Murilo Rodrigues, Fabiana Kashiwabuchi, Ke Hu, Monika Deshpande, Yassine Daoud, Sharon Solomon, Adam Wenick, Gerard Lutty and Gregg L. Semenza, all of The Johns Hopkins University; and Tao Ma and Silvia Montaner of the University of Maryland, Baltimore.

Media Contact

Shawna Williams


Shawna Williams | EurekAlert!

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>