Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests that healthy adults may need less sleep as they age

01.02.2010
A study in the Feb. 1 issue of the journal SLEEP suggests that healthy older adults without sleep disorders can expect to have a reduced "sleep need" and to be less sleepy during the day than healthy young adults.

Results show that during a night of eight hours in bed, total sleep time decreased significantly and progressively with age. Older adults slept about 20 minutes less than middle-aged adults, who slept 23 minutes less than young adults. The number of awakenings and the amount of time spent awake after initial sleep onset increased significantly with age, and the amount of time spent in deep, slow-wave sleep decreased across age groups. Yet even with these decreases in sleep time, intensity and continuity, older adults displayed less subjective and objective daytime sleep propensity than younger adults.

Furthermore, two additional nights involving experimental disruption of slow-wave sleep led to a similar response in all age groups. Daytime sleep propensity increased, and slow-wave sleep rebounded during a night of recovery sleep. According to the authors, this suggests that the lack of increased daytime sleepiness in the presence of an age-related deterioration in sleep quality cannot be attributed to unresponsiveness to variations in homeostatic sleep pressure. Instead, healthy aging appears to be associated with reductions in the sleep duration and depth required to maintain daytime alertness.

"Our findings reaffirm the theory that it is not normal for older people to be sleepy during the daytime," said principal investigator Derk-Jan Dijk, PhD, professor of sleep and physiology at the University of Surrey in the U.K. "Whether you are young or old, if you are sleepy during the day you either don't get enough sleep or you may suffer from a sleep disorder."

The study was conducted at the Clinical Research Centre of the University of Surrey and involved 110 healthy adults without sleep disorders or sleep complaints; 44 were young (20 to 30 years), 35 were middle-aged (40 to 55 years) and 31 were older adults (66 to 83 years). After an eight-hour baseline sleep test, subjects were randomized to two nights with or without selective slow-wave sleep disruption by acoustic stimuli, followed by one recovery night. Nighttime sleep was evaluated by polysomnography, while sleep propensity was assessed using the Multiple Sleep Latency Test (MSLT) and the Karolinska Sleepiness Scale.

During the baseline night, mean objective total sleep time decreased from 433.5 minutes for young adults to 409.9 minutes for middle-aged adults and 390.4 minutes for older adults. Average minutes of slow-wave sleep decreased from 118.4 minutes for young adults to 85.3 minutes for middle-aged adults and 84.2 minutes for older adults. Mean number of minutes spent awake after initial sleep onset increased from 21 for young adults to 49.9 for middle-aged adults and 70.7 for older adults.

Objective daytime sleepiness measured by the MSLT decreased with age. When asked to lie in a comfortable position on the bed and try to fall asleep, young adults fell asleep in an average of 8.7 minutes, compared with 11.7 minutes for middle-aged adults and 14.2 minutes for older adults.

The authors noted that the cause of the age-related reductions in slow-wave sleep and sleep need still must be established. Related factors could include alterations in reproductive hormones or changes in the brain. They added that the study did not address sleep propensity during the evening hours, when it is possible that older adults may be sleepier than young adults.

According to the authors, the study also has implications for the treatment of insomnia in older adults, who may be unaware of their reduced sleep need. Therefore, sleep restriction, which leads to increased homeostatic sleep pressure, may be a successful behavioral therapy for insomnia in healthy older adults.

SLEEP is the official journal of the APSS, a joint venture of the American Academy of Sleep Medicine and the Sleep Research Society. The APSS publishes original findings in areas pertaining to sleep and circadian rhythms. SLEEP, a peer-reviewed scientific and medical journal, publishes 12 regular issues and 1 issue comprised of the abstracts presented at the SLEEP Meeting of the APSS.

For a copy of the study, "Age-related Reduction in Daytime Sleep Propensity and Nocturnal Slow Wave Sleep," or to arrange an interview with an AASM spokesperson, please contact Kelly Wagner, AASM public relations coordinator, at (708) 492-0930, ext. 9331, or kwagner@aasmnet.org.

AASM is a professional membership organization dedicated to the advancement of sleep medicine and sleep-related research. As the national accrediting body for sleep disorders centers and laboratories for sleep related breathing disorders, the AASM promotes the highest standards of patient care. The organization serves its members and advances the field of sleep health care by setting the clinical standards for the field of sleep medicine, advocating for recognition, diagnosis and treatment of sleep disorders, educating professionals dedicated to providing optimal sleep health care and fostering the development and application of scientific knowledge.

Kelly Wagner | EurekAlert!
Further information:
http://www.aasmnet.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>