Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests expanding the genetic alphabet may be easier than previously thought

04.06.2012
A new study led by scientists at The Scripps Research Institute suggests that the replication process for DNA—the genetic instructions for living organisms that is composed of four bases (C, G, A and T)—is more open to unnatural letters than had previously been thought.

An expanded "DNA alphabet" could carry more information than natural DNA, potentially coding for a much wider range of molecules and enabling a variety of powerful applications, from precise molecular probes and nanomachines to useful new life forms.

The new study, which appears in the June 3, 2012 issue of Nature Chemical Biology, solves the mystery of how a previously identified pair of artificial DNA bases can go through the DNA replication process almost as efficiently as the four natural bases.

"We now know that the efficient replication of our unnatural base pair isn't a fluke, and also that the replication process is more flexible than had been assumed," said Floyd E. Romesberg, associate professor at Scripps Research, principal developer of the new DNA bases, and a senior author of the new study. The Romesberg laboratory collaborated on the new study with the laboratory of co-senior author Andreas Marx at the University of Konstanz in Germany, and the laboratory of Tammy J. Dwyer at the University of San Diego.

Adding to the DNA Alphabet

Romesberg and his lab have been trying to find a way to extend the DNA alphabet since the late 1990s. In 2008, they developed the efficiently replicating bases NaM and 5SICS, which come together as a complementary base pair within the DNA helix, much as, in normal DNA, the base adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G).

The following year, Romesberg and colleagues showed that NaM and 5SICS could be efficiently transcribed into RNA in the lab dish. But these bases' success in mimicking the functionality of natural bases was a bit mysterious. They had been found simply by screening thousands of synthetic nucleotide-like molecules for the ones that were replicated most efficiently. And it had been clear immediately that their chemical structures lack the ability to form the hydrogen bonds that join natural base pairs in DNA. Such bonds had been thought to be an absolute requirement for successful DNA replication —a process in which a large enzyme, DNA polymerase, moves along a single, unwrapped DNA strand and stitches together the opposing strand, one complementary base at a time.

An early structural study of a very similar base pair in double-helix DNA added to Romesberg's concerns. The data strongly suggested that NaM and 5SICS do not even approximate the edge-to-edge geometry of natural base pairs—termed the Watson-Crick geometry, after the co-discoverers of the DNA double-helix. Instead, they join in a looser, overlapping, "intercalated" fashion. "Their pairing resembles a 'mispair,' such as two identical bases together, which normally wouldn't be recognized as a valid base pair by the DNA polymerase," said Denis Malyshev, a graduate student in Romesberg's lab who was lead author along with Karin Betz of Marx's lab.

Yet in test after test, the NaM-5SICS pair was efficiently replicable. "We wondered whether we were somehow tricking the DNA polymerase into recognizing it," said Romesberg. "I didn't want to pursue the development of applications until we had a clearer picture of what was going on during replication."

Edge to Edge

To get that clearer picture, Romesberg and his lab turned to Dwyer's and Marx's laboratories, which have expertise in finding the atomic structures of DNA in complex with DNA polymerase. Their structural data showed plainly that the NaM-5SICS pair maintain an abnormal, intercalated structure within double-helix DNA—but remarkably adopt the normal, edge-to-edge, "Watson-Crick" positioning when gripped by the polymerase during the crucial moments of DNA replication.

"The DNA polymerase apparently induces this unnatural base pair to form a structure that's virtually indistinguishable from that of a natural base pair," said Malyshev.

NaM and 5SICS, lacking hydrogen bonds, are held together in the DNA double-helix by "hydrophobic" forces, which cause certain molecular structures (like those found in oil) to be repelled by water molecules, and thus to cling together in a watery medium. "It's very possible that these hydrophobic forces have characteristics that enable the flexibility and thus the replicability of the NaM-5SICS base pair," said Romesberg. "Certainly if their aberrant structure in the double helix were held together by more rigid covalent bonds, they wouldn't have been able to pop into the correct structure during DNA replication."

An Arbitrary Choice?

The finding suggests that NaM-5SICS and potentially other, hydrophobically bound base pairs could some day be used to extend the DNA alphabet. It also hints that Evolution's choice of the existing four-letter DNA alphabet—on this planet—may have been somewhat arbitrary. "It seems that life could have been based on many other genetic systems," said Romesberg.

He and his laboratory colleagues are now trying to optimize the basic functionality of NaM and 5SICS, and to show that these new bases can work alongside natural bases in the DNA of a living cell.

"If we can get this new base pair to replicate with high efficiency and fidelity in vivo, we'll have a semi-synthetic organism," Romesberg said. "The things that one could do with that are pretty mind blowing."

The other contributors to the paper, "KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry," are Thomas Lavergne of the Romesberg lab, Wolfram Welte and Kay Diederichs of the Marx lab, and Phillip Ordoukhanian of the Center for Protein and Nucleic Acid Research at The Scripps Research Institute.

The study was supported in part by a grant from the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>