Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests new approach to common cause of blindness

16.06.2009
Researchers at the University of North Carolina at Chapel Hill School of Medicine in collaboration with lead investigators at the University of Kentucky have identified a new target for the diagnosis and treatment of age-related macular degeneration, the most common cause of blindness in older Americans.
Researchers at the University of North Carolina at Chapel Hill School of Medicine in collaboration with lead investigators at the University of Kentucky have identified a new target for the diagnosis and treatment of age-related macular degeneration, the most common cause of blindness in older Americans.

In a study published online June 14, 2009 by the journal Nature, the researchers demonstrate that blocking the activity of a specific protein – called CCR3 -- can reduce the abnormal blood vessel growth that leads to macular degeneration. Furthermore, targeting this new protein may prove to be safer and more effective than the current treatment for the disease, which is directed at a protein called vascular endothelial growth factor or “VEGF.”

The discovery -- made in mouse models and cultured human cells -- may also enable physicians to catch the disease in its earliest stages, before blood vessels have fully infiltrated and destroyed the central portion of the eye’s retina -- an area known as the macula -- to cause vision loss.

“It would be much better to prevent the disease in the first place,” said study co-author and principal investigator of the UNC study site, Mary Elizabeth Hartnett, M.D., a professor of ophthalmology in the UNC School of Medicine. “An exciting implication of this study was that the CCR3 protein could be detected in early abnormal blood vessel growth, giving us the opportunity to prevent structural damage to the retina and preserve vision.”

Age-related macular degeneration (AMD) affects 30 to 50 million people globally, and that number is expected to double in the next decade as the baby boomer generation ages. The disease is currently treated with drugs that block the effects of VEGF, a growth factor that promotes the growth of abnormal blood vessels. However, because this factor is also involved in the growth and health of normal blood vessels, concerns have been raised about the safety of its long-term use. To date, however, these anti-VEGF agents have been found to be safe.

Thus, the investigators sought to identify a new target for treatment that is specific to AMD. They detected the presence of the CCR3 protein in eye tissue from humans with AMD but not in that of individuals of similar age who did not have the disease. When they blocked CCR3, either with drugs or through genetic engineering, they saw a decrease in the generation of abnormal blood vessels. Drugs targeting CCR3 were significantly more effective than those targeting VEGF, meaning this could represent a new therapy for the two-thirds of patients that do not respond to current treatment.

The researchers now may look to see if levels of the protein can be detected in the bloodstream in order to identify people who are at risk of developing the disease. They also plan to search for genetic changes in the CCR3 gene in patients with AMD to better understand its causes.

The National Eye Institute, a component of the National Institutes of Health, helped support this research.

UNC study co-authors along with Hartnett include Steven J. Budd, technician and Pete Geisen, former technician, both from the Hartnett laboratory; and John D. Wright, Jr., M.D., associate professor of ophthalmology. The lead investigator was Jayakrishna Ambati, M.D., professor of ophthalmology and visual sciences and of physiology at the University of Kentucky. Other sites include Nagoya City University, University of Cincinnati, University of Utah, Veterans Affairs of Salt Lake City, Kyushu University, Harvard Medical School, Oregon Health and Science University and University of Luebeck.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>