Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests new approach to common cause of blindness

16.06.2009
Researchers at the University of North Carolina at Chapel Hill School of Medicine in collaboration with lead investigators at the University of Kentucky have identified a new target for the diagnosis and treatment of age-related macular degeneration, the most common cause of blindness in older Americans.
Researchers at the University of North Carolina at Chapel Hill School of Medicine in collaboration with lead investigators at the University of Kentucky have identified a new target for the diagnosis and treatment of age-related macular degeneration, the most common cause of blindness in older Americans.

In a study published online June 14, 2009 by the journal Nature, the researchers demonstrate that blocking the activity of a specific protein – called CCR3 -- can reduce the abnormal blood vessel growth that leads to macular degeneration. Furthermore, targeting this new protein may prove to be safer and more effective than the current treatment for the disease, which is directed at a protein called vascular endothelial growth factor or “VEGF.”

The discovery -- made in mouse models and cultured human cells -- may also enable physicians to catch the disease in its earliest stages, before blood vessels have fully infiltrated and destroyed the central portion of the eye’s retina -- an area known as the macula -- to cause vision loss.

“It would be much better to prevent the disease in the first place,” said study co-author and principal investigator of the UNC study site, Mary Elizabeth Hartnett, M.D., a professor of ophthalmology in the UNC School of Medicine. “An exciting implication of this study was that the CCR3 protein could be detected in early abnormal blood vessel growth, giving us the opportunity to prevent structural damage to the retina and preserve vision.”

Age-related macular degeneration (AMD) affects 30 to 50 million people globally, and that number is expected to double in the next decade as the baby boomer generation ages. The disease is currently treated with drugs that block the effects of VEGF, a growth factor that promotes the growth of abnormal blood vessels. However, because this factor is also involved in the growth and health of normal blood vessels, concerns have been raised about the safety of its long-term use. To date, however, these anti-VEGF agents have been found to be safe.

Thus, the investigators sought to identify a new target for treatment that is specific to AMD. They detected the presence of the CCR3 protein in eye tissue from humans with AMD but not in that of individuals of similar age who did not have the disease. When they blocked CCR3, either with drugs or through genetic engineering, they saw a decrease in the generation of abnormal blood vessels. Drugs targeting CCR3 were significantly more effective than those targeting VEGF, meaning this could represent a new therapy for the two-thirds of patients that do not respond to current treatment.

The researchers now may look to see if levels of the protein can be detected in the bloodstream in order to identify people who are at risk of developing the disease. They also plan to search for genetic changes in the CCR3 gene in patients with AMD to better understand its causes.

The National Eye Institute, a component of the National Institutes of Health, helped support this research.

UNC study co-authors along with Hartnett include Steven J. Budd, technician and Pete Geisen, former technician, both from the Hartnett laboratory; and John D. Wright, Jr., M.D., associate professor of ophthalmology. The lead investigator was Jayakrishna Ambati, M.D., professor of ophthalmology and visual sciences and of physiology at the University of Kentucky. Other sites include Nagoya City University, University of Cincinnati, University of Utah, Veterans Affairs of Salt Lake City, Kyushu University, Harvard Medical School, Oregon Health and Science University and University of Luebeck.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>