Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study shows in vivo endomicroscopy improves detection of Barrett's esophagus-related neoplasia

New research shows that the addition of confocal laser endomicroscopy to high-definition white-light endoscopy enables improved real-time endoscopic diagnosis of Barrett's esophagus dysplasia (neoplastic tissue) by using targeted biopsies of abnormal mucosa to reduce unnecessary mucosal biopsies and potentially reduce costs.

It may also positively influence patient care by changing the plan for immediate endoscopic management. The study appears in the February issue of GIE: Gastrointestinal Endoscopy, the monthly peer-reviewed scientific journal of the American Society for Gastrointestinal Endoscopy (ASGE).

Barrett's esophagus (BE) is a precancerous change in the epithelial lining of the esophagus that is associated with the development of esophageal cancer. The current best, though imperfect, marker of neoplastic progression is dysplasia (abnormality in cells which have undergone early changes on a path toward possible malignancy) detected in mucosal biopsy specimens of the lining of the esophagus obtained at the time of endoscopy. High-grade dysplasia is associated with a high rate of progression to invasive esophageal cancer.

Detection and pathologic confirmation of early BE neoplasia (high-grade dysplasia or early esophageal cancer) is important because endoscopic therapy at this point is highly successful. Unfortunately, neoplasia in BE may not be evident even with only endoscopic inspection, so the current standard of care is endoscopic surveillance with high-quality white-light endoscopy using systematic 4-quadrant biopsies every 1 to 2 cm of BE length and targeted biopsies of any mucosal irregularities. A large number of biopsies may be required using this random biopsy method, resulting in high cost and increased time. This method has a low (1 percent to 10 percent) diagnostic yield for neoplasia and may result in lower adherence to practice guidelines.

Confocal laser endomicroscopy (CLE) is a relatively new endoscopic imaging technique that combines endoscopy and microscopic imaging of the gastrointestinal (GI) mucosa (the superficial lining of the GI tract). A previous single-center, randomized, crossover study, demonstrated a greater diagnostic yield for the detection of BE neoplasia with an in vivo fluorescein-aided endoscope-based CLE system (eCLE).

"Our study compared the diagnostic yield and accuracy of high definition white-light endoscopy (HDWLE) and random biopsy with that of HDWLE plus real-time eCLE imaging and targeted tissue sampling of BE, and determined the impact of in vivo eCLE on real-time clinical decision making in patients with BE," said study lead author Marcia Irene Canto, MD, MHS, FASGE, Johns Hopkins University, Baltimore, Maryland. "We found that real-time eCLE and targeted biopsy after HDWLE can improve the diagnostic yield and accuracy for neoplasia and significantly impact in vivo decision making by altering the diagnosis and guiding therapy."


This was a multicenter, randomized, controlled trial of 192 adult patients with BE undergoing routine surveillance or referred for early neoplasia from February 2010 to December 2012 at academic medical centers. The researchers' objective was to compare high-definition white-light endoscopy (HDWLE) alone with random biopsy (RB) and HDWLE plus eCLE and targeted biopsy (TB) for diagnosis of BE neoplasia. Patients were randomized to HDWLE plus RB (group 1) or HDWLE with eCLE and TB (group 2). Real-time diagnoses and management plans were recorded after HDWLE in both groups and after eCLE in group 2. Blinded expert pathology diagnosis was the reference standard. The main outcomes were diagnostic yield, performance characteristics, and clinical impact.


HDWLE plus eCLE and TB (group 2) led to a lower number of mucosal biopsies and higher diagnostic yield for neoplasia (34 percent vs 7 percent), compared with HDWLE and RB (group 1) but with comparable accuracy. HDWLE plus eCLE and TB tripled the diagnostic yield for neoplasia (22 percent vs 6 percent) and would have obviated the need for any biopsy in 65 percent of patients. The addition of eCLE to HDWLE increased the sensitivity for neoplasia detection to 96 percent from 40 percent without significant reduction in specificity. In vivo CLE changed the treatment plan in 36 percent of patients. An eCLE was performed successfully and safely in all patients. There were no adverse reactions to fluorescein administration.

The researchers noted several limitations including that the study was only at academic centers with highly experienced endoscopists. The results may not be generalizable to community-based physicians, less-experienced practitioners and nonacademic practices. Second, they used the eCLE system, and their findings may not be generalizable to other pCLE systems. Also, the endoscopists were not blinded to prior endoscopy and pathology results because these were necessary for standard medical care and in vivo decision making regarding biopsy or EMR.

The researchers concluded that the addition of in vivo imaging with eCLE to HDWLE is associated with improved targeting of neoplasia, a decrease in unnecessary mucosal biopsies and a significant change in diagnosis and management plans in patients with BE. The approach of real-time CLE diagnosis and imaging-guided therapy represents a potential paradigm shift in BE surveillance. Research studies are needed to address training in CLE, comparative effectiveness studies of advanced endoscopic imaging techniques, the role of imaging-guided therapy and advances in CLE devices and contrast agents.

In an accompanying editorial, Manuel Berzosa, MD and Michael B. Wallace, MD, MPH, Mayo Clinic, Jacksonville, Florida, stated, "This is an important study for Barrett's esophagus surveillance because it demonstrates that a targeted biopsy strategy using endoscope based confocal laser endomicroscopy can be a superior alternative to random biopsy protocols."

About the American Society for Gastrointestinal Endoscopy

Since its founding in 1941, the American Society for Gastrointestinal Endoscopy (ASGE) has been dedicated to advancing patient care and digestive health by promoting excellence and innovation in gastrointestinal endoscopy. ASGE, with more than 12,000 members worldwide, promotes the highest standards for endoscopic training and practice, fosters endoscopic research, recognizes distinguished contributions to endoscopy, and is the foremost resource for endoscopic education. Visit and for more information and to find a qualified doctor in your area.
About Endoscopy

Endoscopy is performed by specially-trained physicians called endoscopists using the most current technology to diagnose and treat diseases of the gastrointestinal tract. Using flexible, thin tubes called endoscopes, endoscopists are able to access the human digestive tract without incisions via natural orifices. Endoscopes are designed with high-intensity lighting and fitted with precision devices that allow viewing and treatment of the gastrointestinal system.

Anne Brownsey | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>