Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows How Substance in Grapes May Squeeze Out Diabetes

16.10.2009
A naturally produced molecule called resveratrol, found in the skin of red grapes, has been shown to lower insulin levels in mice when injected directly into the brain, even when the animals ate a high-fat diet.

The findings from a new UT Southwestern Medical Center study suggest that when acting directly on certain proteins in the brain, resveratrol may offer some protection against diabetes.

Prior research has shown that the compound exerts anti-diabetic actions when given orally to animals with type 2 diabetes (non-insulin dependent diabetes mellitus), but it has been unclear which tissues in the body mediated these effects.

“Our study shows that the brain plays an important role in mediating resveratrol’s anti-diabetic actions, and it does so independent of changes in food intake and body weight,” said Dr. Roberto Coppari, assistant professor of internal medicine at UT Southwestern and senior author of the study appearing online and in the December issue of Endocrinology.

“These animals were overrun with fat and many of their organs were inflamed. But when we delivered resveratrol in the brain, it alleviated inflammation in the brain,” added Dr. Coppari.

Dr. Coppari emphasized that his study does not support the conclusion that consuming products made from red grapes, such as red wine, could alleviate diabetes.

“The main reason is that resveratrol does not cross the blood brain barrier efficiently,” he said. “In order for the brain to accumulate the same dose of resveratrol delivered in our study, the amounts of red wine needed daily would surely cause deleterious effects, especially in the liver. Rather, our study suggests that resveratrol’s analogs that selectively target the brain may help in the fight against diet-induced diabetes.”

For the study, the researchers investigated what happens when resveratrol acts only in the brain. Specifically, they wanted to know whether resveratrol injected in the brain activated a group of proteins called sirtuins, which are found throughout the body and thought to underlie many of the beneficial effects of calorie restriction. Previous animal research has shown that when these proteins are activated by resveratrol, diabetes is improved. In addition, drugs activating sirtuins currently are being tested as anti-diabetic medications in human trials, Dr. Coppari said.

In one group of animals, researchers injected resveratrol directly into the brain; another group received a saline-based placebo. All the surgically treated animals consumed a high-fat diet before and after the surgery.

Dr. Coppari said the insulin levels of the animals treated with the placebo solution rose increasingly higher post-surgery. “That’s a normal outcome because insulin sensitivity decreases the longer you keep an animal on a high-fat diet.”

Insulin levels in the mice given resveratrol, however, actually started to drop and were halfway to normal by the end of the five-week study period, even though the animals remained on a high-fat diet.

In addition, the researchers found that resveratrol did indeed activate sirtuin proteins in the brain.

Dr. Coppari said the findings support his team’s theory that the brain plays a vital role in mediating the beneficial effects of resveratrol and that manipulation of brain sirtuins also may have other beneficial outcomes. “By knowing that the central nervous system is involved, pharmaceutical companies can begin to focus on developing drugs that selectively target sirtuins in the brain,” he said.

The next step, Dr. Coppari said, is to determine precisely which neurons in the brain are mediating the effects of the resveratrol.

Other UT Southwestern researchers involved in the study include Drs. Giorgio Ramadori, Laurent Gautron and Teppei Fujikawa, postdoctoral researchers in internal medicine; Dr. Claudia Vianna, instructor of internal medicine; and Dr. Joel Elmquist, professor of internal medicine and director of the Center for Hypothalamic Research at UT Southwestern.

The study was supported by the American Heart Association, National Institutes of Health and the American Diabetes Association.

Visit www.utsouthwestern.org/endocrinology to learn more about clinical services in endocrinology at UT Southwestern, including treatment of diabetes.

Dr. Roberto Coppari -- www.utsouthwestern.edu/findfac/professional/0,2356,91961,00.html

Kristen Holland Shear | Newswise Science News
Further information:
http://www.utsouthwestern.org/endocrinology

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>