Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows how spikes in nitrite can have a lasting impact on the heart

05.03.2009
A new study provides insight into how a short burst in nitrite can exert lasting beneficial effects on the heart, protecting it from stress and assaults such as heart attacks.

In this study, just published in Circulation Research, researchers at Boston University School of Medicine have demonstrated for the first time that short elevations in circulating levels of this simple anion are sufficient to have a lasting impact on the heart by modulating its oxidation status and its protein machinery.

Nitrite, an oxidation product of the ubiquitous short-lived cell signaling molecule, nitric oxide (NO), was until recently thought to be biologically inert at the relatively low levels found in the body. Traces of nitrite are present in our diet and significant amounts are continuously produced from nitrate, another oxidation product of NO and a constituent of green, leafy vegetables. The suspicion that high levels of nitrite and nitrate may cause cancer, as well as concerns about their risk to compromise the ability of red blood cells to deliver oxygen to tissues, have led to strict regulations aimed at limiting our exposure to these substances through drinking water and food products.

In the past few years, however, multiple research groups have shown that low concentrations of nitrite exert numerous beneficial effects, ranging from anti-bacterial activities to increases in local blood flow, and that they can somehow protect tissues from damage when oxygen is suddenly cut off and then rapidly restored, as occurs during heart attacks and strokes.

To study the molecular underpinnings of this protective effect of nitrite, the researchers at Boston University School of Medicine used a rat model in which they administered nitrite only once, causing a short spike in circulating levels, as a way to simulate the types of naturally occurring increases in nitrite that follow exercise or consumption of a meal rich in nitrate.

The researchers used a systems-biology approach in which changes in multiple biological and biochemical systems (e.g., the composition of a large number of proteins, the concentration of several small molecule metabolites, and functional outcomes) are simultaneously monitored and then integrated to produce one final picture in order to provide a broader view of the impact of this treatment on the heart. They tested their theory that following these changes over time and at different doses of nitrite might help to explain the protective effects of nitrite on the heart.

"What we found was that a single brief nitrite treatment elicited persisting changes in the heart's oxidation status together with lasting alterations to numerous proteins involved in the heart's energy metabolism, redox regulation, and signaling," said David H. Perlman, a post-doctoral research associate in the Cardiovascular Proteomics Center at Boston University School of Medicine, and lead author of the study. "These alterations were particularly striking because they persisted at least 24 hours after the actual nitrite levels had returned back to normal, and they were correlated strongly with the improvements in heart function observed at the same time."

He noted that this type of protection, called 'cardiac preconditioning', is a recently discovered phenomenon shown to be caused by numerous pharmacological agents.

"The proteins we have implicated include some key proteins, such as mitochondrial aldehyde dehydrogenase, that have been shown by others to be critical to cardiac protection afforded by other agents and triggers," added Perlman. "This is exciting because it ties nitrite-triggered cardioprotection into the broader preconditioning field. Our study complements and extends other work, and identifies new players of potential importance for protection of the heart."

Perlman explained that nitrite levels in our bodies change under a number of circumstances, such as when we run up a flight of stairs or eat a big serving of salad.

"For years, the resulting bursts in nitrite were considered to be of little if any physiological relevance. Now we have good reason to believe that even small spikes in nitrite concentration can alter protein function in the heart in ways that afford protection," noted Perlman.

"We are intrigued by the breadth and magnitude of the proteomic changes in heart mitochondria elicited by a single, short-lasting elevation in nitrite concentration and believe that our findings will have broad implications for mitochondrial signalling and cardiac energetics," commented Martin Feelisch, senior author of the study. "It looks as though nitrite is triggering an ancient program aimed at fine-tuning mitochondrial function. Although the present study focussed on the heart, our observations may extend to other tissues and translate into relevant changes in muscle function elsewhere. If true, this may help explain, for example, the training effects of very short periods of exercise, which are known to be associated with elevations in circulating nitrite concentrations."

Interestingly, only low and high doses of nitrite, but not those in-between, were found to be protective. Although further studies will be needed to fully delineate the mechanisms of nitrite-induced cardioprotection, this study informs ongoing basic and translational studies by highlighting the importance of the dose-effect relationship for nitrite and the broad array of downstream targets possibly involved in its cardioprotective efficacy, the researchers concluded.

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>