Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows how spikes in nitrite can have a lasting impact on the heart

05.03.2009
A new study provides insight into how a short burst in nitrite can exert lasting beneficial effects on the heart, protecting it from stress and assaults such as heart attacks.

In this study, just published in Circulation Research, researchers at Boston University School of Medicine have demonstrated for the first time that short elevations in circulating levels of this simple anion are sufficient to have a lasting impact on the heart by modulating its oxidation status and its protein machinery.

Nitrite, an oxidation product of the ubiquitous short-lived cell signaling molecule, nitric oxide (NO), was until recently thought to be biologically inert at the relatively low levels found in the body. Traces of nitrite are present in our diet and significant amounts are continuously produced from nitrate, another oxidation product of NO and a constituent of green, leafy vegetables. The suspicion that high levels of nitrite and nitrate may cause cancer, as well as concerns about their risk to compromise the ability of red blood cells to deliver oxygen to tissues, have led to strict regulations aimed at limiting our exposure to these substances through drinking water and food products.

In the past few years, however, multiple research groups have shown that low concentrations of nitrite exert numerous beneficial effects, ranging from anti-bacterial activities to increases in local blood flow, and that they can somehow protect tissues from damage when oxygen is suddenly cut off and then rapidly restored, as occurs during heart attacks and strokes.

To study the molecular underpinnings of this protective effect of nitrite, the researchers at Boston University School of Medicine used a rat model in which they administered nitrite only once, causing a short spike in circulating levels, as a way to simulate the types of naturally occurring increases in nitrite that follow exercise or consumption of a meal rich in nitrate.

The researchers used a systems-biology approach in which changes in multiple biological and biochemical systems (e.g., the composition of a large number of proteins, the concentration of several small molecule metabolites, and functional outcomes) are simultaneously monitored and then integrated to produce one final picture in order to provide a broader view of the impact of this treatment on the heart. They tested their theory that following these changes over time and at different doses of nitrite might help to explain the protective effects of nitrite on the heart.

"What we found was that a single brief nitrite treatment elicited persisting changes in the heart's oxidation status together with lasting alterations to numerous proteins involved in the heart's energy metabolism, redox regulation, and signaling," said David H. Perlman, a post-doctoral research associate in the Cardiovascular Proteomics Center at Boston University School of Medicine, and lead author of the study. "These alterations were particularly striking because they persisted at least 24 hours after the actual nitrite levels had returned back to normal, and they were correlated strongly with the improvements in heart function observed at the same time."

He noted that this type of protection, called 'cardiac preconditioning', is a recently discovered phenomenon shown to be caused by numerous pharmacological agents.

"The proteins we have implicated include some key proteins, such as mitochondrial aldehyde dehydrogenase, that have been shown by others to be critical to cardiac protection afforded by other agents and triggers," added Perlman. "This is exciting because it ties nitrite-triggered cardioprotection into the broader preconditioning field. Our study complements and extends other work, and identifies new players of potential importance for protection of the heart."

Perlman explained that nitrite levels in our bodies change under a number of circumstances, such as when we run up a flight of stairs or eat a big serving of salad.

"For years, the resulting bursts in nitrite were considered to be of little if any physiological relevance. Now we have good reason to believe that even small spikes in nitrite concentration can alter protein function in the heart in ways that afford protection," noted Perlman.

"We are intrigued by the breadth and magnitude of the proteomic changes in heart mitochondria elicited by a single, short-lasting elevation in nitrite concentration and believe that our findings will have broad implications for mitochondrial signalling and cardiac energetics," commented Martin Feelisch, senior author of the study. "It looks as though nitrite is triggering an ancient program aimed at fine-tuning mitochondrial function. Although the present study focussed on the heart, our observations may extend to other tissues and translate into relevant changes in muscle function elsewhere. If true, this may help explain, for example, the training effects of very short periods of exercise, which are known to be associated with elevations in circulating nitrite concentrations."

Interestingly, only low and high doses of nitrite, but not those in-between, were found to be protective. Although further studies will be needed to fully delineate the mechanisms of nitrite-induced cardioprotection, this study informs ongoing basic and translational studies by highlighting the importance of the dose-effect relationship for nitrite and the broad array of downstream targets possibly involved in its cardioprotective efficacy, the researchers concluded.

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>