Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor

18.09.2013
NREL, MIT take an in-depth look at national competitiveness in PV manufacturing

Production scale, not lower labor costs, drives China’s current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department’s National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Although the prevailing belief is that low labor costs and direct government subsidies for PV manufacturing in China account for that country's dominance in PV manufacturing, the NREL/MIT study shows that a majority of the region's current competitive advantage comes from production scale enabled, in part through preferred access to capital (indirect government subsidies), and resulting supply chain benefits. The study’s findings also suggest that the current advantages of China-based manufacturers could be reproduced in the United States.

“Assessing the Drivers of Regional Trends in Solar Photovoltaic Manufacturing,” co-authored by NREL and MIT, and funded by the Energy Department through its Clean Energy Manufacturing Initiative, was published today in the peer-reviewed journal Energy & Environmental Science. By developing manufacturing cost models, the team of researchers examined the underlying causes for shifts from a global network of manufactures to a production base that is now largely based in China.

The study shows that China’s historical advantage in low-cost manufacturing is mainly due to advantages of production scale, and offset by other country-specific factors, such as investment risk and inflation. The authors also found that technology innovation and global supply?chain development could enable increased manufacturing scale around the world, resulting in broader, subsidy?free PV deployment and the potential for manufacturing price parity in most regions. Their analysis indicates that further innovations in crystalline silicon solar cell technology may spur new investment, significantly enhancing access to capital for manufacturers in most regions and enabling scale-up, thus equalizing PV prices from manufacturers in the United States and China.

“Our analysis finds that investments in technology research and development are critical not only to the widespread deployment of solar PV in most locations, without subsidy, but also may equalize factors that affect regional competitiveness, thus creating opportunities for U.S.-based manufacturers,” NREL Senior Analyst Alan Goodrich said. “The race for cost-competitive clean energy from the sun is far from over and incredible growth opportunities remain.”

“Innovation is critical to driving the technological advancements that can position the U.S. to gain greater market share in the global PV supply chain,” said David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy at the Energy Department. “We believe that innovation could drive down costs and drive up efficiencies not only in PV manufacturing, but also in the production of other high-tech and high-value clean energy technologies, and position U.S.-based manufacturers to be leaders in one of the most important global economic races of the 21st century.”

The research team relied on industry-validated manufacturing cost models to calculate minimum sustainable prices (MSP) for monocrystalline silicon solar panels manufactured in the United States and in China, simulating how a global manufacturing firm decides where to locate its factories. The MSP represents the minimum price at which a company can sell its products, while providing expected returns to sources of capital — conditions that are necessary to sustain growth without subsidies.

Excluding shipping costs, the team estimated that China?based manufacturers have a 23% MSP advantage over U.S.?based manufacturers today, taking into account differences in the manufacturing costs of modules, wafers, and cells within each country. Scale and supply?chain advantages account for the majority of a Chinese factory’s MSP advantage. These advantages, which are not inherent to China, could be replicated by U.S.-based manufacturers if comparable scale can be achieved.

To motivate serious capital investment in the U.S. to manufacture PV at scale, the technology must be truly innovative, low cost, and able to compete subsidy-free. “The ‘holy grail’ is an innovative PV module with high efficiency, low material costs, streamlined and scalable manufacturing, and unquestionable reliability,” said Tonio Buonassisi, associate professor at MIT and co-author of the study. “The PV modules you can buy today have a few of these attributes, but not all of them together. Thus, practical technological innovation is a key driver to accelerate the convergence between photovoltaics and traditional energy sources, both in terms of price and scale. This common goal, for the benefit of all nations, is an opportunity for international cooperation that leverages our complementary strengths.”

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

Visit NREL online at www.nrel.gov

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>