Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor

18.09.2013
NREL, MIT take an in-depth look at national competitiveness in PV manufacturing

Production scale, not lower labor costs, drives China’s current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department’s National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Although the prevailing belief is that low labor costs and direct government subsidies for PV manufacturing in China account for that country's dominance in PV manufacturing, the NREL/MIT study shows that a majority of the region's current competitive advantage comes from production scale enabled, in part through preferred access to capital (indirect government subsidies), and resulting supply chain benefits. The study’s findings also suggest that the current advantages of China-based manufacturers could be reproduced in the United States.

“Assessing the Drivers of Regional Trends in Solar Photovoltaic Manufacturing,” co-authored by NREL and MIT, and funded by the Energy Department through its Clean Energy Manufacturing Initiative, was published today in the peer-reviewed journal Energy & Environmental Science. By developing manufacturing cost models, the team of researchers examined the underlying causes for shifts from a global network of manufactures to a production base that is now largely based in China.

The study shows that China’s historical advantage in low-cost manufacturing is mainly due to advantages of production scale, and offset by other country-specific factors, such as investment risk and inflation. The authors also found that technology innovation and global supply?chain development could enable increased manufacturing scale around the world, resulting in broader, subsidy?free PV deployment and the potential for manufacturing price parity in most regions. Their analysis indicates that further innovations in crystalline silicon solar cell technology may spur new investment, significantly enhancing access to capital for manufacturers in most regions and enabling scale-up, thus equalizing PV prices from manufacturers in the United States and China.

“Our analysis finds that investments in technology research and development are critical not only to the widespread deployment of solar PV in most locations, without subsidy, but also may equalize factors that affect regional competitiveness, thus creating opportunities for U.S.-based manufacturers,” NREL Senior Analyst Alan Goodrich said. “The race for cost-competitive clean energy from the sun is far from over and incredible growth opportunities remain.”

“Innovation is critical to driving the technological advancements that can position the U.S. to gain greater market share in the global PV supply chain,” said David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy at the Energy Department. “We believe that innovation could drive down costs and drive up efficiencies not only in PV manufacturing, but also in the production of other high-tech and high-value clean energy technologies, and position U.S.-based manufacturers to be leaders in one of the most important global economic races of the 21st century.”

The research team relied on industry-validated manufacturing cost models to calculate minimum sustainable prices (MSP) for monocrystalline silicon solar panels manufactured in the United States and in China, simulating how a global manufacturing firm decides where to locate its factories. The MSP represents the minimum price at which a company can sell its products, while providing expected returns to sources of capital — conditions that are necessary to sustain growth without subsidies.

Excluding shipping costs, the team estimated that China?based manufacturers have a 23% MSP advantage over U.S.?based manufacturers today, taking into account differences in the manufacturing costs of modules, wafers, and cells within each country. Scale and supply?chain advantages account for the majority of a Chinese factory’s MSP advantage. These advantages, which are not inherent to China, could be replicated by U.S.-based manufacturers if comparable scale can be achieved.

To motivate serious capital investment in the U.S. to manufacture PV at scale, the technology must be truly innovative, low cost, and able to compete subsidy-free. “The ‘holy grail’ is an innovative PV module with high efficiency, low material costs, streamlined and scalable manufacturing, and unquestionable reliability,” said Tonio Buonassisi, associate professor at MIT and co-author of the study. “The PV modules you can buy today have a few of these attributes, but not all of them together. Thus, practical technological innovation is a key driver to accelerate the convergence between photovoltaics and traditional energy sources, both in terms of price and scale. This common goal, for the benefit of all nations, is an opportunity for international cooperation that leverages our complementary strengths.”

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

Visit NREL online at www.nrel.gov

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>