Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows More Shrubbery in a Warming World

09.12.2011
Scientists have used satellite data from NASA-built Landsat missions to confirm that more than 20 years of warming temperatures in northern Quebec, Canada, have resulted in an increase in the amount and extent of shrubs and grasses.

"For the first time, we've been able to map this change in detail, and it's because of the spatial resolution and length-of-record that you can get with Landsat," says Jeff Masek, the program's project scientist. He's based at NASA's Goddard Space Flight Center in Greenbelt, Md.

Masek and his co-authors will present their study at the American Geophysical Meeting in San Francisco on Friday, Dec. 9.

The study, focusing on Quebec, is one of the first to present a detailed view of how warmer temperatures are influencing plant distribution and density in northern areas of North America.

"Unlike the decline of sea ice, which is a dramatic effect that we're seeing as a result of global warming, the changes in vegetation have been subtle," Masek says.

Computer models predict the northward expansion of vegetation due to warmer temperatures. "They predict a dramatic change over the next 100 years, and people have been wondering why we weren't seeing these changes already, Masek says.

The difference between the computer predictions and real-life vegetation may have to do with all the other factors that come into play with plants, like the availability of water and sunlight; the type of terrain; competition from other plants for soil, resources and space; and plant predators like caribou.

"The warm temperatures are only part of the equation," says Doug Morton, the Principal Investigator of the study and a researcher at NASA Goddard.

Scientists track vegetation with satellites by measuring the 'greenness' of a study area. Morton says previous studies used yearly compilations, making it difficult to determine if the increase in 'greenness' was due to expansion of vegetation cover or if what scientists were seeing was instead just the effect of a longer growing season.

For this study, the scientists focused only on 'greenness' measurements during the peak summer growing seasons from 1986 to 2010.

By using Landsat's higher, 30-meter (~98 foot) resolution and viewing the same area at the same time for 23 years, Masek and his colleagues were able to track the areas as they continued to show more 'greenness' over the years. "It makes sense," Masek says. "This is how shrub encroaching occurs. They increase in size, they increase in density, and then they move northward."

In contrast to the expansion of shrubs, the scientists found little evidence for 'greenness' trends in forested areas, suggesting that forest response to recent warming may be occurring more slowly. Masek adds that it shows how getting the big picture of warming's effect on forests will rely on continued observations from new U.S. missions that extend and enhance these data records.

The Landsat Program is a series of Earth-observing satellite missions jointly managed by NASA and the U.S. Geological Survey since 1972. They continue to improve and expand this unparalleled record of Earth's changing landscapes for the benefit of all.

For more information on Landsat, visit:

http://www.nasa.gov/landsat Aries Keck
NASA Goddard Space Flight Center

Aries Keck | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/shrub-spread.html

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>