Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows More Shrubbery in a Warming World

09.12.2011
Scientists have used satellite data from NASA-built Landsat missions to confirm that more than 20 years of warming temperatures in northern Quebec, Canada, have resulted in an increase in the amount and extent of shrubs and grasses.

"For the first time, we've been able to map this change in detail, and it's because of the spatial resolution and length-of-record that you can get with Landsat," says Jeff Masek, the program's project scientist. He's based at NASA's Goddard Space Flight Center in Greenbelt, Md.

Masek and his co-authors will present their study at the American Geophysical Meeting in San Francisco on Friday, Dec. 9.

The study, focusing on Quebec, is one of the first to present a detailed view of how warmer temperatures are influencing plant distribution and density in northern areas of North America.

"Unlike the decline of sea ice, which is a dramatic effect that we're seeing as a result of global warming, the changes in vegetation have been subtle," Masek says.

Computer models predict the northward expansion of vegetation due to warmer temperatures. "They predict a dramatic change over the next 100 years, and people have been wondering why we weren't seeing these changes already, Masek says.

The difference between the computer predictions and real-life vegetation may have to do with all the other factors that come into play with plants, like the availability of water and sunlight; the type of terrain; competition from other plants for soil, resources and space; and plant predators like caribou.

"The warm temperatures are only part of the equation," says Doug Morton, the Principal Investigator of the study and a researcher at NASA Goddard.

Scientists track vegetation with satellites by measuring the 'greenness' of a study area. Morton says previous studies used yearly compilations, making it difficult to determine if the increase in 'greenness' was due to expansion of vegetation cover or if what scientists were seeing was instead just the effect of a longer growing season.

For this study, the scientists focused only on 'greenness' measurements during the peak summer growing seasons from 1986 to 2010.

By using Landsat's higher, 30-meter (~98 foot) resolution and viewing the same area at the same time for 23 years, Masek and his colleagues were able to track the areas as they continued to show more 'greenness' over the years. "It makes sense," Masek says. "This is how shrub encroaching occurs. They increase in size, they increase in density, and then they move northward."

In contrast to the expansion of shrubs, the scientists found little evidence for 'greenness' trends in forested areas, suggesting that forest response to recent warming may be occurring more slowly. Masek adds that it shows how getting the big picture of warming's effect on forests will rely on continued observations from new U.S. missions that extend and enhance these data records.

The Landsat Program is a series of Earth-observing satellite missions jointly managed by NASA and the U.S. Geological Survey since 1972. They continue to improve and expand this unparalleled record of Earth's changing landscapes for the benefit of all.

For more information on Landsat, visit:

http://www.nasa.gov/landsat Aries Keck
NASA Goddard Space Flight Center

Aries Keck | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/shrub-spread.html

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>