Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows how seals sleep with only half their brain at a time

20.02.2013
A new study led by an international team of biologists has identified some of the brain chemicals that allow seals to sleep with half of their brain at a time.
The study was published this month in the Journal of Neuroscience and was headed by scientists at UCLA and the University of Toronto. It identified the chemical cues that allow the seal brain to remain half awake and asleep. Findings from this study may explain the biological mechanisms that enable the brain to remain alert during waking hours and go off-line during sleep.

“Seals do something biologically amazing — they sleep with half their brain at a time. The left side of their brain can sleep while the right side stays awake. Seals sleep this way while they’re in water, but they sleep like humans while on land. Our research may explain how this unique biological phenomenon happens” said Professor John Peever of the University of Toronto.

The study’s first author, University of Toronto PhD student Jennifer Lapierre, made this discovery by measuring how different chemicals change in the sleeping and waking sides of the brain. She found that acetylcholine – an important brain chemical – was at low levels on the sleeping side of the brain but at high levels on the waking side. This finding suggests that acetylcholine may drive brain alertness on the side that is awake.

But, the study also showed that another important brain chemical – serotonin – was present at the equal levels on both sides of the brain whether the seals were awake or asleep. This was a surprising finding because scientist long thought that serotonin was a chemical that causes brain arousal.

These findings have possible human health implications because “about 40% of North Americans suffer from sleep problems and understanding which brain chemicals function to keep us awake or asleep is a major scientific advance. It could help solve the mystery of how and why we sleep” says the study’s senior author Jerome Siegel of UCLA’s Brain Research Institute.

An abstract of the study can be found online: http://www.csb.utoronto.ca/faculty/peever-john/symmetrical-serotonin-release-during-asymmetrical-slow-wave-sleep-implications-n

For more information, please contact:

Jerome Siegel, PhD
Chief, Neurobiology Research
Professor, Psychiatry and Biobehavioral Sciences
Brain Research Institute, UCLA
jsiegel@ucla.edu
Tel: 818-891-7711 ext.7581
Mobile: 818-891-8612

John Peever, PhD
Associate Professor, Systems Neurobiology Laboratory
Dept. Cell & Systems Biology, University of Toronto
john.peever@utoronto.ca
Tel: 416-946-5564
Mobile: 647-207-7920

Dominic Ali | EurekAlert!
Further information:
http://www.utoronto.ca

Further reports about: Brain Brain Research Neurobiology biological mechanism brain chemical

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>