Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study shows promise in using RNA nanotechnology to treat cancers and viral infections

A new study by University of Kentucky researchers shows promise for developing ultrastable RNA nanoparticles that may help treat cancer and viral infections by regulating cell function and binding to cancers without harming surrounding tissue.
The study, published in Nano Today, was carried out in the laboratory of Peixuan Guo, the William S. Farish Endowed Chair in Nanobiotechnology at the UK Markey Cancer Center, in collaboration with Dr. Mark Evers, director of the UK Markey Cancer Center.

The study uses RNA (ribonucleic acid) as a building block for the bottom-up fabrication of nanostructures. Using the RNA nanotechnology pioneered by Guo, the researchers constructed ultrastable X-shaped RNA nanoparticles using re-engineered RNA fragments to carry up to four therapeutic and diagnostic modules. Their RNA nanoparticles can include small interfering RNA for silencing genes, micro-RNA for regulating gene expression, aptamer for targeting cancer cells, or a ribozyme that can catalyze chemical reactions.
The study demonstrated that regulation of cellular functions progressively increased with the increasing number of functional modules in the nanoparticle.

"RNA nanotechnology is an emerging field, but the instability and degradation of RNA nanoparticles have made many scientists flinch away from the research in RNA nanotechnology," Guo said. "We have addressed these issues, and now it is possible to produce RNA nanoparticles that are highly stable both chemically and thermodynamically in the test tube or in the body with great potential as therapeutic reagents."

The RNA nanoparticles displayed several favorable attributes: polyvalent nature, which allows simultaneous delivery of multiple functional molecules for achieving synergistic effects; modular design, which enables controlled self-assembly with defined structure; thermodynamically stable, which keeps the RNA nanoparticles intact in animal and human circulation systems, where they exist at very low concentrations; and chemically stable, which makes the nanoparticles resistant to RNase (an enzyme, which cleaves RNA) digestion in the blood serum.

"A major problem with cancer treatments is the ability to more directly and specifically deliver anti-cancer drugs to cancer metastases," Evers said. "Using the nanotechnology approach that Peixuan Guo and his group have devised may allow us to more effectively treat cancer metastasis with fewer side effects compared to current chemotherapy."

In addition to Evers and Markey team member Dr. Piotr Rychahou, Guo's research team at UK also includes Farzin Haque, first author on the paper; Dan Shu; Yi Shu; and Luda Shlyakhtenko.

Allison Perry | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

21.03.2018 | Trade Fair News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>