Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows promise for new cancer-stopping therapy

15.06.2009
Strategy could have implications for multiple tumor types

Researchers at Nationwide Children's Hospital and Johns Hopkins University have discovered that delivering a small molecule that is highly expressed in normal tissues but lost in diseased cells can result in tumor suppression.

MicroRNAs (miRNA) are a class of small RNA molecules that are highly expressed in normal tissues and are critical in gene expression and in maintaining normal cell development and cell balance. Dysfunction of miRNAs has been linked to multiple human diseases including schizophrenia, autism and cancer.

"The pattern of expression of miRNAs has emerged as critically useful information for understanding cancer development and could be used to establish prognosis and treatment responses," said Janaiah Kota, PhD, a postdoctoral scientist from Nationwide Children's.

In a study reported in Cell (June 12, 2009), the team of researchers employed a novel strategy to treat an important form of cancer. Studies targeted hepatocellular (liver) cancer (HCC), the third leading cause of cancer-related deaths. HCC is commonly associated with underlying liver abnormalities, such as hepatitis B and C infections and cirrhosis. HCC is difficult to treat since it is often diagnosed at an advanced stage and because its biologic composition makes the tumor highly resistant to current drug therapies. However, the research reported in Cell suggests that miRNA gene delivery may be a clinically viable therapy when delivered by a recombinant adeno-associated virus (AAV).

HCC expresses a reduced number of miRNAs, including miR-26a. By combining miRNA technology developed at Johns Hopkins University with the gene delivery expertise of Nationwide Children's Hospital, scientists were able to successfully deliver AAV carrying miR-26a to a mouse with established HCC. This gene therapy strategy inhibited growth of cancer cells and led to tumor reduction and cell death, without causing toxic side effects to the remainder of the liver. This demonstrates for the first time that therapeutic delivery of a miRNA in an animal can result in tumor suppression, without the need for specifically targeting the cancer causing oncogene.

"We are eagerly looking forward to applying this methodology to other tumor types in the laboratory and potentially bringing this approach forward for clinical testing in patients," said Jerry Mendell, MD, director, Center for Gene Therapy in The Research Institute at Nationwide Children's Hospital and a faculty member of The Ohio State University College of Medicine. "While there remains significant work to be done both in identifying such miRNAs and optimizing their delivery, our findings highlight the therapeutic promise of this approach."

The findings of therapeutic miRNA gene replacement in HCC has potential for applicability to other types of cancers, as well. The delivery and restoration of miRNA expression via AAV mediated gene transfer of the miRNA may be beneficial to a large number of cancer subtypes.

"This concept of replacing microRNAs that are expressed in high levels in normal tissues but lost in diseases hasn't been explored before," said Josh Mendell, M.D., Ph.D., an associate professor in the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine. "Our work raises the possibility of a more general therapeutic approach that is based on restoring microRNAs to diseased tissues."

Mary Ellen Peacock | EurekAlert!
Further information:
http://www.nationwidechildrens.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>