Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows projected climate change in West Africa not likely to worsen malaria situation

16.09.2013
As public-health officials continue to fight malaria in sub-Saharan Africa, researchers are trying to predict how climate change will impact the disease, which infected an estimated 219 million people in 2010 and is the fifth leading cause of death worldwide among children under age 5.

But projections of future malaria infection have been hampered by wide variation in rainfall predictions for the region and lack of a malaria-transmission model that adequately describes the effects of local rainfall on mosquitoes, which breed and mature in ephemeral pools that form during and after monsoons in West Africa.

A new MIT study led by Elfatih Eltahir, a professor in the Department of Civil and Environmental Engineering, combines a new model of malaria transmission with global forecasts for temperature and rainfall to improve predictions of malaria with climate change. Eltahir and graduate student Teresa Yamana found that although the capacity for malaria transmission will change in some areas of West Africa, overall infection rates are not likely to increase: Climate change by itself is not likely to make the situation worse. A paper on the study appeared online Sept. 16 in the journal Environmental Health Perspectives.

"Malaria is one of the world's leading public-health problems, taking a toll not only in lives, but also in economic terms, especially in Africa," Eltahir says. "While other researchers are looking at the global impacts of climate change on broadly defined variables such as global temperature or global sea level, the biggest challenge faced by the global climate-change research community is how to come up with credible predictions for specific variables that are relevant to society, such as malaria incidence, defined at the appropriate regional and local scales."

The study used a combined epidemiological and hydrological model of malaria transmission developed earlier by Eltahir and former graduate student Arne Bomblies, now an assistant professor at the University of Vermont. The model uses detailed information about rainfall, temperature, wind, topography and soils at the village scale.

It simulates mosquito behavior by tracking the location, biting, infective status and reproduction cycle of individual female mosquitoes on an hourly basis and includes variables describing humans and other animals that serve as sources of blood meals for mosquitos. Eltahir and Bomblies tested the model using extensive field data gathered from representative villages in Niger over two years, including adult mosquito abundance, observations of pools, and meteorological and soil-moisture measurements.

To incorporate regional data into the model, Yamana took daily satellite data and broke it down into hourly increments so the model could use hourly rainfall to simulate formation of breeding pools. She established baseline current climate conditions by feeding the model satellite data for five climate zones — starting at the southern fringes of the Sahara and moving south through the Sahel transitional zone into the wetter regions of the Guinean coast.

She then repeated the simulations using long-term temperature and rainfall predictions taken from global climate models, which predict a temperature increase in West Africa from 2 to 6 degrees Celsius by the end of the century, and rainfall changes ranging from large reductions to moderate or large increases. Working on the assumption that future rainfall levels will fall somewhere in between, Yamana and Eltahir identified the rainfall and temperature changes that would create the best and worst environmental suitability for malaria in each of the five zones.

They found that on the southern border of the Sahara, temperatures will become too hot for the survival of Anopheles funestus and Anopheles gambiae sensu lato, the most common malaria-carrying species in Africa. As a result, any likely changes in rainfall would have only a minor impact on malaria.

On the other extreme, hotter temperatures in the southern zone close to the Guinean coast will speed the development of the malaria parasite, improving environmental suitability for malaria regardless of changes in rainfall. However, this area is already heavily saturated with the disease, so the impact is expected to be minimal unless this region experiences an influx of people from the north.

Between these two extremes, the opposing impacts of warming temperature and increasing rainfall are likely to cancel each other, minimizing the impact on disease transmission along the transitional Sahel zone.

The researchers point out that their study does not take into account possible changes in population, migration, economics, health care and other socioeconomic factors.

"Many countries in this region are very underdeveloped and people are much more vulnerable to changes in the environment than people in more developed areas," Yamana says. "If these countries become fully developed and are no longer vulnerable to vector-borne diseases, or malaria is completely eradicated, that would be fantastic news. But I don't think we can count on either of these things happening in the near future."

The study was funded by the National Science Foundation.

Written by Denise Brehm, MIT News Office

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>