Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows pine bark reduces jetlag

07.11.2008
Pycnogenol cut jetlag symptoms in half for passengers taking 7- to 9-hour flights

A new study published in the journal of Minerva Cardioangiologica reveals Pycnogenol, pine bark extract from the French maritime pine tree, reduces jetlag in passengers by nearly 50 percent.

The two-part study, consisting of a brain CT scan and a scoring system, showed Pycnogenol lowered symptoms of jetlag such as fatigue, headaches, insomnia and brain edema (swelling) in both healthy individuals and hypertensive patients. Passengers also experienced minimal lower leg edema, a common condition associated with long flights.

Jetlag, also called desynchronosis, is a temporary disorder that causes a variety of temporary mental and physical impairments as a result of air travel across time zones – common in flights to Asia and Europe, but also observed in travelers between West and East coast. It is caused due to the body's inability to immediately adjust to the time in a different zone while travelling. As the body struggles to cope with the new schedule, temporary conditions such as insomnia, fatigue, irritability and an impaired ability to concentrate may set in.

"This study could not have come at a better time for the upcoming holiday travel season," said Dr. Gianni Belcaro, a lead researcher of the study. Belcaro attributes Pycnogenol's combined activities for better circulation and antioxidant potency to such remarkable results. "Previous Pycnogenol flight studies have shown a reduction in jetlag; however this was the first study to solely focus on the condition."

The study, conducted at the G. D'Annunzio University in Pescara, Italy, consisted of 133 passengers who took flights that were seven to nine hours in length. Fifty mg of oral Pycnogenol was administered three times daily, for seven days, starting two days prior to the flight.

Patients in the first part of the study were evaluated with a rating scale consisting of a scoring system. Thirty-eight Pycnogenol-treated and 30 control patients were rated on the most common complaints of jetlag: dehydration and loss of appetite; headaches and/or sinus irritation; fatigue; disorientation and/or grogginess; nausea and/or upset stomach; insomnia and/or highly irregular sleep patterns; irritability; irrational behavior; alternation in mental performance (easy crossword); alternations in general wellbeing; hours of duration of any signs/symptoms; and nights of altered/disturbed sleep. Observations were measured and taken within 48 hours after the end of the flights. Results showed a significantly lower score (56 percent) in the Pycnogenol group for all items rated, amounting in a significant reduction of all jetlag signs and symptoms. Moreover, symptoms lasted only for an average of 18.2 hours in the Pycnogenol group as compared to 39.3 hours in the control group.

In a second group of flight passengers, a brain CT scan was performed after the flight in order to assess brain alterations after flights. The study consisted of 34 Pycnogenol-treated patients and 31 controlled patients. Jetlag symptoms were evaluated using a rating scale providing scores according to the severity. The first observation was performed within 28 hours from the end of the flight. Sleep alterations, short-term memory alterations, disorientation, neurological signs/symptoms of instability, anxiety, minor cardiac alterations (heart rate, blood pressure), lower limb swelling, fatigue and other, a-specific signs/symptoms (cramps, joints/muscular pain, blurred vision, vertigo, mild sickness, increase in body temperature, appetite loss, headache, mild tongue swelling) were all significantly lower by in average 61.5% in the Pycnogenol group compared to the untreated control group.

"This is the first study describing diffuse subliminal swellings of the brain after long haul flights, which we found to be reduced to less than half in the Pycnogenol group," said Dr. Belcaro

"I'm encouraged by the results of the study as Pycnogenol was effective in preventing jetlag related effects without any side-effects," said Dr. Belcaro. While more research needs to be conducted on this topic, Pycnogenol is emerging as natural, yet safe option for long distance travelers.

Pycnogenol has been shown to be beneficial for flight travel in previous studies pertaining to edema, deep vein thrombosis (DVT) and blood circulation improvement. A study published in Clinical Applied Thrombosis/Hemostasis recorded passengers supplementing with Pycnogenol on long distance flights lasting 7-12 hours were significantly protected from thrombotic events, complications resulting from deep vein thrombosis (DVT) and superficial vein thrombosis (SVT). In 2005, a study published in Clinical and Applied Thrombosis/Hemostasis showed Pycnogenol to be effective in reducing leg and ankle swelling (edema) during long airplane flights lasting seven to 12 hours.

About Pycnogenol

Pycnogenol is a natural plant extract originating from the bark of the maritime pine that grows along the coast of southwest France and is found to contain a unique combination of procyanidins, bioflavonoids and organic acids, which offer extensive natural health benefits. The extract has been widely studied for the past 35 years and has more than 220 published studies and review articles ensuring safety and efficacy as an ingredient. Today, Pycnogenol is available in more than 600 dietary supplements, multi-vitamins and health products worldwide. For more information, visit www.pycnogenol.com.

Natural Health Science Inc. (NHS), based in Hoboken, New Jersey, is the North American distributor for Pycnogenol (pic-noj-en-all) brand French maritime pine bark extract on behalf of Horphag Research. Pycnogenol is a registered trademark of Horphag Research Ltd., Guernsey, and its applications are protected by U.S. patents #5,720,956 / #6,372,266 and other international patents. NHS has the exclusive rights to market and sell Pycnogenol in North America and benefits from more than 35 years of scientific research assuring the safety and efficacy of Pycnogenol as a dietary supplement. For more information about Pycnogenol visit our Web site at www.pycnogenol.com.

Melanie Nimrodi | EurekAlert!
Further information:
http://www.mww.com
http://www.pycnogenol.com

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>