Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows PET can measure effectiveness of novel breast cancer treatment

06.07.2009
Study in mice holds potential for people diagnosed with cancer, according to study

A new study published in the July issue of The Journal of Nuclear Medicine shows that positron emission tomography (PET) scans in mice can be used to determine whether a novel type of breast cancer treatment is working as intended.

Researchers successfully used PET and a specially-developed radioactive compound to image HER2—a protein often associated with aggressive breast cancer—in breast cancer cells before and after treatment aimed at decreasing HER2 expression. This molecular imaging methodology could facilitate development of new targeted therapies not only for breast cancer, but also for certain types of ovarian, prostate, and lung cancers that may be aggravated due to HER2.

"Obtaining an accurate assessment of the HER2 expression levels in breast cancer tumors is absolutely essential to know whether treatment aimed at reduction of the protein levels in tumor cells is effective," said Jacek Capala, senior author of the study and investigator for the radiation oncology branch of the National Cancer Institute, National Institutes of Health, Bethesda, Md. "Our study indicates that PET could be a powerful tool both to identify patients who might benefit from targeted molecular therapies and to manage their care by measuring response to treatment. As research into HER2 therapies continues, similar techniques could be developed for other cancers overexpressing different proteins."

Much new research has been focused on developing therapies targeted to HER2. This protein is overexpressed in approximately 20 percent of breast cancers and also in some ovarian, prostate and lung cancers. Tumors that have an overabundance of HER2 protein are more aggressive and more likely to recur than tumors that do not overexpress the protein.

The imaging technique developed in the study represents a breakthrough in measuring HER2 expression. The conventional method requires biopsies of tumors that have been removed from the body; however, these samples may not represent the overall characteristics of the tumor and may not accurately estimate HER2 expression. In addition, there are currently no means to evaluate how long a therapeutic agent takes to affect the targeted tumors and how long the effects last.

In the study, researchers attached the radioactive nuclide flourine-18 to an HER2-binding variant of a small protein known as an Affibody molecule. PET scans can detect the Affibody compound and allow researchers to visualize breast cancer tumors with HER2 protein in mice. These molecules can also be engineered to specifically bind to other targets for cancer diagnosis and therapy.

The researchers implanted human breast cancer cells—expressing either very high or high levels of HER2—under the skin of mice to show that this method of imaging can be used to monitor changes in HER2 expression after treatment. Researchers then intravenously injected the HER2-targeting Affibody compound and performed PET imaging three to five weeks after tumors had formed. Four doses of the drug 17-DMAG were administered, which decreases HER2 expression, spaced 12 hours apart. PET scans were performed before the treatment and after each dose.

The researchers found that HER2 expression was reduced by 71 percent in mice bearing tumors with very high levels of HER2 protein and by 33 percent in mice bearing tumors with high levels of the protein, compared to the levels measured before treatment and to tumors that did not receive the treatment. Researchers confirmed their data using established laboratory techniques to determine the concentrations of HER2 proteins in the same tumors after they were removed from the mice.

G. Kramer-Marek, D.O. Kiesewetter, J. Capala, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Md.; and National Institute of Biomedical Imaging and Bioengineering, NIH; "Changes in HER2 Expression in Breast Cancer Xenografts After Therapy Can Be Quantified Using PET and 18F-Labeled Affibody Molecules," The Journal of Nuclear Medicine, July 2009.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit www.snm.org.

Amy Shaw | EurekAlert!
Further information:
http://www.snm.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>