Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows PET can measure effectiveness of novel breast cancer treatment

06.07.2009
Study in mice holds potential for people diagnosed with cancer, according to study

A new study published in the July issue of The Journal of Nuclear Medicine shows that positron emission tomography (PET) scans in mice can be used to determine whether a novel type of breast cancer treatment is working as intended.

Researchers successfully used PET and a specially-developed radioactive compound to image HER2—a protein often associated with aggressive breast cancer—in breast cancer cells before and after treatment aimed at decreasing HER2 expression. This molecular imaging methodology could facilitate development of new targeted therapies not only for breast cancer, but also for certain types of ovarian, prostate, and lung cancers that may be aggravated due to HER2.

"Obtaining an accurate assessment of the HER2 expression levels in breast cancer tumors is absolutely essential to know whether treatment aimed at reduction of the protein levels in tumor cells is effective," said Jacek Capala, senior author of the study and investigator for the radiation oncology branch of the National Cancer Institute, National Institutes of Health, Bethesda, Md. "Our study indicates that PET could be a powerful tool both to identify patients who might benefit from targeted molecular therapies and to manage their care by measuring response to treatment. As research into HER2 therapies continues, similar techniques could be developed for other cancers overexpressing different proteins."

Much new research has been focused on developing therapies targeted to HER2. This protein is overexpressed in approximately 20 percent of breast cancers and also in some ovarian, prostate and lung cancers. Tumors that have an overabundance of HER2 protein are more aggressive and more likely to recur than tumors that do not overexpress the protein.

The imaging technique developed in the study represents a breakthrough in measuring HER2 expression. The conventional method requires biopsies of tumors that have been removed from the body; however, these samples may not represent the overall characteristics of the tumor and may not accurately estimate HER2 expression. In addition, there are currently no means to evaluate how long a therapeutic agent takes to affect the targeted tumors and how long the effects last.

In the study, researchers attached the radioactive nuclide flourine-18 to an HER2-binding variant of a small protein known as an Affibody molecule. PET scans can detect the Affibody compound and allow researchers to visualize breast cancer tumors with HER2 protein in mice. These molecules can also be engineered to specifically bind to other targets for cancer diagnosis and therapy.

The researchers implanted human breast cancer cells—expressing either very high or high levels of HER2—under the skin of mice to show that this method of imaging can be used to monitor changes in HER2 expression after treatment. Researchers then intravenously injected the HER2-targeting Affibody compound and performed PET imaging three to five weeks after tumors had formed. Four doses of the drug 17-DMAG were administered, which decreases HER2 expression, spaced 12 hours apart. PET scans were performed before the treatment and after each dose.

The researchers found that HER2 expression was reduced by 71 percent in mice bearing tumors with very high levels of HER2 protein and by 33 percent in mice bearing tumors with high levels of the protein, compared to the levels measured before treatment and to tumors that did not receive the treatment. Researchers confirmed their data using established laboratory techniques to determine the concentrations of HER2 proteins in the same tumors after they were removed from the mice.

G. Kramer-Marek, D.O. Kiesewetter, J. Capala, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Md.; and National Institute of Biomedical Imaging and Bioengineering, NIH; "Changes in HER2 Expression in Breast Cancer Xenografts After Therapy Can Be Quantified Using PET and 18F-Labeled Affibody Molecules," The Journal of Nuclear Medicine, July 2009.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit www.snm.org.

Amy Shaw | EurekAlert!
Further information:
http://www.snm.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>