Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows PET can measure effectiveness of novel breast cancer treatment

06.07.2009
Study in mice holds potential for people diagnosed with cancer, according to study

A new study published in the July issue of The Journal of Nuclear Medicine shows that positron emission tomography (PET) scans in mice can be used to determine whether a novel type of breast cancer treatment is working as intended.

Researchers successfully used PET and a specially-developed radioactive compound to image HER2—a protein often associated with aggressive breast cancer—in breast cancer cells before and after treatment aimed at decreasing HER2 expression. This molecular imaging methodology could facilitate development of new targeted therapies not only for breast cancer, but also for certain types of ovarian, prostate, and lung cancers that may be aggravated due to HER2.

"Obtaining an accurate assessment of the HER2 expression levels in breast cancer tumors is absolutely essential to know whether treatment aimed at reduction of the protein levels in tumor cells is effective," said Jacek Capala, senior author of the study and investigator for the radiation oncology branch of the National Cancer Institute, National Institutes of Health, Bethesda, Md. "Our study indicates that PET could be a powerful tool both to identify patients who might benefit from targeted molecular therapies and to manage their care by measuring response to treatment. As research into HER2 therapies continues, similar techniques could be developed for other cancers overexpressing different proteins."

Much new research has been focused on developing therapies targeted to HER2. This protein is overexpressed in approximately 20 percent of breast cancers and also in some ovarian, prostate and lung cancers. Tumors that have an overabundance of HER2 protein are more aggressive and more likely to recur than tumors that do not overexpress the protein.

The imaging technique developed in the study represents a breakthrough in measuring HER2 expression. The conventional method requires biopsies of tumors that have been removed from the body; however, these samples may not represent the overall characteristics of the tumor and may not accurately estimate HER2 expression. In addition, there are currently no means to evaluate how long a therapeutic agent takes to affect the targeted tumors and how long the effects last.

In the study, researchers attached the radioactive nuclide flourine-18 to an HER2-binding variant of a small protein known as an Affibody molecule. PET scans can detect the Affibody compound and allow researchers to visualize breast cancer tumors with HER2 protein in mice. These molecules can also be engineered to specifically bind to other targets for cancer diagnosis and therapy.

The researchers implanted human breast cancer cells—expressing either very high or high levels of HER2—under the skin of mice to show that this method of imaging can be used to monitor changes in HER2 expression after treatment. Researchers then intravenously injected the HER2-targeting Affibody compound and performed PET imaging three to five weeks after tumors had formed. Four doses of the drug 17-DMAG were administered, which decreases HER2 expression, spaced 12 hours apart. PET scans were performed before the treatment and after each dose.

The researchers found that HER2 expression was reduced by 71 percent in mice bearing tumors with very high levels of HER2 protein and by 33 percent in mice bearing tumors with high levels of the protein, compared to the levels measured before treatment and to tumors that did not receive the treatment. Researchers confirmed their data using established laboratory techniques to determine the concentrations of HER2 proteins in the same tumors after they were removed from the mice.

G. Kramer-Marek, D.O. Kiesewetter, J. Capala, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Md.; and National Institute of Biomedical Imaging and Bioengineering, NIH; "Changes in HER2 Expression in Breast Cancer Xenografts After Therapy Can Be Quantified Using PET and 18F-Labeled Affibody Molecules," The Journal of Nuclear Medicine, July 2009.

About SNM—Advancing Molecular Imaging and Therapy

SNM is an international scientific and medical organization dedicated to raising public awareness about what molecular imaging is and how it can help provide patients with the best health care possible. SNM members specialize in molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated.

SNM's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit www.snm.org.

Amy Shaw | EurekAlert!
Further information:
http://www.snm.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>