Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows overeating impairs brain insulin function, can lead to diabetes and obesity

18.10.2012
New research from Mount Sinai School of Medicine sheds light on how overeating can cause a malfunction in brain insulin signaling, and lead to obesity and diabetes. Christoph Buettner, MD, PhD, Associate Professor of Medicine (Endocrinology, Diabetes and Bone Disease) and his research team found that overeating impairs the ability of brain insulin to suppress the breakdown of fat in adipose tissue.

In previous research Dr. Buettner's team established that brain insulin is what suppresses lipolysis, a process during which triglycerides in fat tissue are broken down and fatty acids are released. When lipolysis is unrestrained, fatty acid levels are elevated, which can initiate and worsen obesity and type 2 diabetes. The current study is published online in The Journal of Biological Chemistry. The first study was published in the February 2, 2011 issue of Cell Metabolism.

"We are interested in understanding why people who eat too much eventually develop diabetes. Our recent studies suggest that once you overeat, your brain develops insulin resistance. Since brain insulin controls lipolysis in adipose tissue by reducing sympathetic nervous system outflow to adipose tissue, brain insulin resistance causes increased spillage of fatty acids from adipose tissue into the blood stream," said Dr. Buettner.

Increased fatty acids induce inflammation and that, in turn, can further worsen insulin resistance, which is the core defect in type 2 diabetes. Fatty acids also increase glucose production in the liver which raises blood glucose levels, Dr. Buettner explained. "It's a vicious cycle and while we knew that this can begin with overeating, this study shows that it is really the brain that is harmed first which then starts the downward spiral."

In this study, researchers fed rats a high-fat diet comprised of 10 percent lard for three consecutive days. This increased their daily caloric intake by up to 50 percent compared to the control rats that were fed a regular low fat diet. The researchers then infused a tiny amount of insulin into the brains of both groups of rats that they had shown in earlier studies to suppress release of glucose from the liver and fatty acids from fat tissue. They found that overeating impaired the ability of brain insulin to suppress glucose release from the liver and lipolysis in fat tissue. Similarly, short-term overeating in humans is known to produce comparable insulin resistance which could be explained by brain insulin resistance.

"When you overeat, your brain becomes unresponsive to these important clues such as insulin, which puts you on the road to diabetes. We believe that what happens in rats also happens in humans" said Dr. Buettner.

Dr. Buettner's team plans to investigate methods of improving brain insulin function that could restrain lipolysis and improve insulin resistance.

The study was supported by a grant from the National Institutes of Health and the American Diabetes Association. First author of the study is Thomas Scherer, PhD, postdoctoral fellow in Mount Sinai's Department of Medicine in the Division of Endocrinology, Diabetes and Bone Disease.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of the leading medical schools in the United States. The Medical School is noted for innovation in education, biomedical research, clinical care delivery, and local and global community service. It has more than 3,400 faculty in 32 departments and 14 research institutes, and ranks among the top 20 medical schools both in National Institutes of Health (NIH) funding and by U.S. News & World Report.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2012, U.S. News & World Report ranked The Mount Sinai Hospital 14th on its elite Honor Roll of the nation's top hospitals based on reputation, safety, and other patient-care factors. Mount Sinai is one of 12 integrated academic medical centers whose medical school ranks among the top 20 in NIH funding and by U.S. News & World Report and whose hospital is on the U.S. News & World Report Honor Roll. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 560,000 outpatient visits took place.

For more information, visit http://www.mountsinai.org/.
Find Mount Sinai on:
Facebook: http://www.facebook.com/mountsinainyc
Twitter @mountsinainyc
YouTube: http://www.youtube.com/mountsinainy

Jeanne Bernard | EurekAlert!
Further information:
http://www.mountsinai.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>