Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows link between influenza virus and fever

18.11.2009
Scientists solve riddle of new mechanism in immune system

Viruses are microscopically sized parasites. They plant their genes in the cells of their victim in order to 'reprogram' them. The infected cells then no longer produce what they need to live, making lots of new viruses instead.

Luckily, in most cases this hostile takeover does not go unnoticed. This is ensured by the cells' own sensors that recognise alien genetic material. One of them is RIG-I. When RIG-I encounters virus genes, it ensures that the body releases interferon. The interferon then in turn puts killer cells on combat standby, which then destroy the infected cells.

Yet this is only part of the truth. 'According to our results RIG-I appears to play a far more prominent role in the defence against viruses than was previously thought,' Dr. Jürgen Ruland from the University Hospital Rechts der Isar at the Technical University of Munich explains. As a result, many virus infections are accompanied by a high temperature. That is also what happens with influenza, for example. This symptom cannot be explained by interferon release alone.

In most cases it is cytokines which trigger the fever. 'We have now been able to show, for the first time, that RIG-I also cranks up the production of a central cytokine in the case of a virus infection,' Dr. Hendrik Poeck explains. He and his colleagues Dr. Michael Bscheider and Dr. Olaf Groß are the primary authors of the study. This is a reference to interleukin 1, probably the most important cytokine known today.

Do cytokines cause more severe courses of a disease?

When RIG-I comes into contact with a virus gene, it does two things. On the one hand, it ensures that certain immune cells produce pro-interleukin, the precursor of interleukin 1, en masse. At the same time it activates an enzyme via a complicated signalling pathway which transforms pro-interleukin into interleukin 1. 'This interleukin 1 then ensures that the typical symptoms of a virus infection such as fever or shivering occur,' Professor Veit Hornung from the Bonn University Clinic explains.

As yet the researchers do not know how important this newly discovered immune mechanism is for the successful defence against the virus. The release of interleukin may also have negative consequences. 'There is the hypothesis that an overproduction of cytokines may lead to extremely severe courses of virus diseases,' Professor Gunther Hartmann says. Medicines that prevent such a 'cytokine storm' may therefore alleviate the progress of the disease.

Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1beta production. Hendrik Poeck, Michael Bscheider, Olaf Gross, Katrin Finger, Susanne Roth, Manuele Rebsamen, Nicole Hannesschläger, Martin Schlee, Simon Rothenfusser, Winfried Barchet, Hiroki Kato, Shizuo Akira, Satoshi Inoue, Stefan Endres, Christian Peschel, Gunther Hartmann, Veit Hornung & Jürgen Ruland. Nature Immunology, doi: 10.1038/ni.1824

Contact:
Dr. Jürgen Ruland
University Hospital Rechts der Isar, Technical University of Munich
Telephone: +49 (0)89 4140-4112
Email: jruland@lrz.tu-muenchen.de
Prof. Veit Hornung
Institute of Clinical Chemistry and Pharmacology, University of Bonn
Telephone: +49 (0)228 287-12170
Email: veit.hornung@uni-bonn.de

Veit Hornung | EurekAlert!
Further information:
http://www.uni-bonn.de

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>