Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows How One Insect Got Its Wings

13.03.2013
Scientists have delved deeper into the evolutionary history of the fruit fly than ever before to reveal the genetic activity that led to the development of wings – a key to the insect’s ability to survive.

The wings themselves are common research models for this and other species’ appendages. But until now, scientists did not know how the fruit fly, Drosophila melanogaster, first sprouted tiny buds that became flat wings.

A cluster of only 20 or so cells present in the fruit fly’s first day of larval life was analyzed to connect a gene known to be active in the embryo and the gene that triggers the growth of wings.

Researchers determined that the known embryonic gene, called Dpp, sends the first signal to launch the activation of a gene called vn. That signal alone is dramatic, because it crosses cell layers.

The activation of vn lasts just long enough to turn on a target gene that combines with more signals to activate genes responsible for cell growth and completion of wing development.

“Our work shows how when you add a gene into the equation, you get a wing. The clue is that one growth factor, Dpp, turns on another growth factor, vn, but just for a short period of time. You absolutely need a pulse of this activity to turn on yet another gene cascade that gives you a wing, but if vn is active for too long, a wing wouldn’t form,” said Amanda Simcox, professor of molecular genetics at The Ohio State University and lead author of the study.

“We learned all this from investigating 20 tiny cells. The events could be responsible for this big event in evolutionary history, when the insect got its wing. With the wing, if its environment turned bad, the insect could fly off, giving it an advantage.”

Within about five days, those 20 cells give rise to a 50,000-cell fully developed wing.

Simcox and colleagues aren’t yet certain that Dpp’s activation of vn explains how all insects got their wings because of differences in the ways these invertebrates develop.

The research is published this week in the online early edition of Proceedings of the National Academy of Sciences.

Simcox began the analysis on a fruit fly larva that had recently hatched from the egg. She identified a tiny sac of cells representing where a future wing would be that was attached to the body cavity through tubing that runs the length of the larval body. Simcox dissected those sacs away from the body to study them specifically.

By staining the cell sacs with substances that light up target genes, the researchers then made images of the sequence of genetic events they observed. It all started with Dpp, part of a family of genes known as bone morphogenetic protein genes that are well understood in developmental biology.

The analysis showed that Dpp sent its signal from one cell layer to the other across the gap in the middle of the sac to activate the vn gene. The mechanism allowing the genes to talk to each other across that gap remains a mystery, Simcox noted.

“But it’s the only explanation because if we took away the function of Dpp, vn doesn’t get turned on,” she said.

Dpp’s activation of vn is the critical step in turning on its target, the Egfr signaling pathway, which sets off a series of gene activations that drive wing development – specifically, activating genes called ap and iro-C. But vn also has the ability to regulate itself through a feedback loop so it stays on for longer in some cells where it is also needed for making the body of the fly at the location of the wing’s attachment.

In addition to imaging the genes’ activity, the researchers zoomed in on the gene structure to identify the binding sites that enabled the gene signaling to occur. When they mutated the binding sites, the signals were disabled.

“We had genetic evidence linking the events, tracing it back earlier than anyone had ever seen, and we showed directly through analysis of the binding sites that if they were mutated this expression went away,” Simcox said. “We have good lines of evidence that there really is a connection.”

From here, she and colleagues plan to investigate how other insects develop their wings.

This work was supported by grants from the National Science Foundation and the Pelotonia Fellowship Program.

Co-authors include Litty Paul and Sathiya Manivannan of the Molecular, Cellular and Developmental Biology Program; and Shu-Huei Wang, Liana Bonanno, Sarah Lewis and Christina Austin of the Department of Molecular Genetics, all at Ohio State.

Contact: Amanda Simcox, (614) 292-8857; Simcox.1@osu.edu
Written by Emily Caldwell, (614) 292-8310; Caldwell.151@osu.edu

Emily Caldwell | Newswise
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>