Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how infections in newborns are linked to later behavior problems

09.10.2013
In animal study, inflammation stops cells from accessing iron needed for brain development

Researchers exploring the link between newborn infections and later behavior and movement problems have found that inflammation in the brain keeps cells from accessing iron that they need to perform a critical role in brain development.

Specific cells in the brain need iron to produce the white matter that ensures efficient communication among cells in the central nervous system. White matter refers to white-colored bundles of myelin, a protective coating on the axons that project from the main body of a brain cell.

The scientists induced a mild E. coli infection in 3-day-old mice. This caused a transient inflammatory response in their brains that was resolved within 72 hours. This brain inflammation, though fleeting, interfered with storage and release of iron, temporarily resulting in reduced iron availability in the brain. When the iron was needed most, it was unavailable, researchers say.

"What's important is that the timing of the inflammation during brain development switches the brain's gears from development to trying to deal with inflammation," said Jonathan Godbout, associate professor of neuroscience at The Ohio State University and senior author of the study. "The consequence of that is this abnormal iron storage by neurons that limits access of iron to the rest of the brain."

The research is published in the Oct. 9, 2013, issue of the Journal of Neuroscience.

The cells that need iron during this critical period of development are called oligodendrocytes, which produce myelin and wrap it around axons. In the current study, neonatal infection caused neurons to increase their storage of iron, which deprived iron from oligodendrocytes.

In other mice, the scientists confirmed that neonatal E. coli infection was associated with motor coordination problems and hyperactivity two months later – the equivalent to young adulthood in humans. The brains of these same mice contained lower levels of myelin and fewer oligodendrocytes, suggesting that brief reductions in brain-iron availability during early development have long-lasting effects on brain myelination.

The timing of infection in newborn mice generally coincides with the late stages of the third trimester of pregnancy in humans. The myelination process begins during fetal development and continues after birth.

Though other researchers have observed links between newborn infections and effects on myelin and behavior, scientists had not figured out why those associations exist. Godbout's group focuses on understanding how immune system activation can trigger unexpected interactions between the central nervous system and other parts of the body.

"We're not the first to show early inflammatory events can change the brain and behavior, but we're the first to propose a detailed mechanism connecting neonatal inflammation to physiological changes in the central nervous system," said Daniel McKim, a lead author on the paper and a student in Ohio State's Neuroscience Graduate Studies Program.

The neonatal infection caused several changes in brain physiology. For example, infected mice had increased inflammatory markers, altered neuronal iron storage, and reduced oligodendrocytes and myelin in their brains. Importantly, the impairments in brain myelination corresponded with behavioral and motor impairments two months after infection.

Though it's unknown if these movement problems would last a lifetime, McKim noted that "since these impairments lasted into what would be young adulthood in humans, it seems likely to be relatively permanent."

The reduced myelination linked to movement and behavior issues in this study has also been associated with schizophrenia and autism spectrum disorders in previous work by other scientists, said Godbout, also an investigator in Ohio State's Institute for Behavioral Medicine Research (IBMR).

"More research in this area could confirm that human behavioral complications can arise from inflammation changing the myelin pattern. Schizophrenia and autism disorders are part of that," he said.

This current study did not identify potential interventions to prevent these effects of early-life infection. Godbout and colleagues theorize that maternal nutrition – a diet high in antioxidants, for example – might help lower the inflammation in the brain that follows a neonatal infection.

"The prenatal and neonatal period is such an active time of development," Godbout said. "That's really the key – these inflammatory challenges during critical points in development seem to have profound effects. We might just want to think more about that clinically."

This work is the result of close collaboration between Godbout; Ning Quan and Michael Bailey of Ohio State's Division of Oral Biology and the IBMR; Dana McTigue of Ohio State's Department of Neuroscience and Center for Brain and Spinal Cord Repair; and Staci Bilbo of Duke University. Additional co-authors from Ohio State are Jacqueline Lieblein-Boff (now with Abbott Nutrition), Daniel McKim, Daniel Shea, Ping Wei, Zhen Deng and Caroline Sawicki.

The research was supported by Abbott Nutrition and the National Institutes of Health.

Jonathan Godbout, (614) 293-3456; Jonathan.Godbout@osumc.edu

Written by Emily Caldwell, (614) 292-8310; Caldwell.151@osu.edu

Jonathan Godbout | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>