Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study shows importance of exercise for those at special risk for Alzheimer's

Participants included individuals who carry a high-risk gene

Physical activity promotes changes in the brain that may protect high-risk individuals against cognitive decline, including development of Alzheimer's disease, according to a new study done at the University of Wisconsin-Milwaukee (UWM).

J. Carson Smith, an assistant professor of health sciences, included in the study both people who carry a high-risk gene for Alzheimer's disease, and other healthy older adults without the gene.

"Our study suggests that if you are at genetic risk for Alzheimer's disease, the benefits of exercise to your brain function might be even greater than for those who do not have that genetic risk," says Smith.

While evidence already shows that physical activity is associated with maintenance of cognitive function across a life span, most of this research has been done with healthy people, without any consideration of their level of risk for Alzheimer's, says Smith.

A team of researchers compared brain activation during memory processing in four separate groups of healthy 65- to 85-years-olds. The level of risk was defined by whether an individual carried the apolipoprotein E-epsilon4 (APOE–ϵ4) allele. Physical activity status was defined by how much and how often the participants reported physical activity (PA). The study divided subjects into Low Risk/Low PA, Low Risk/High PA, High Risk/Low PA and High Risk/High PA.

Functional magnetic resonance imaging (fMRI) was used to measure brain activation of participants while they performed a mental task involving discriminating among famous people. This test is very useful, says Smith, because it engages a wide network called the semantic memory system, with activation occurring in 15 different functional regions of the brain.

"When a person thinks about people – for example, Frank Sinatra or Lady Gaga – that involves several lobes of the brain," explains Smith.

In the study groups of those carrying the gene, individuals who exercised showed greater brain activity in memory-related regions than those who were sedentary.

Perhaps even more intriguing, physically active people with the gene had greater brain activity than those who were physically active but not gene carriers.

There are many physiological reasons why this could be happening, Smith says. "For example, people with this increased activation might be compensating for some underlying neurological event that is involved in cognitive decline.". "Using more areas of their brain may serve as a protective function, even in the face of disease processes."

The study's collaborating institutions include the Cleveland Clinic, Marquette University, Wayne State University and Rosalind Franklin University of Medicine and Science. It was funded by the National Institutes of Health and the National Institute on Aging.

The study will be published in Vol. 54 (January 2011) of the journal NeuroImage, but is now available online.

Smith's current research builds on this study. He and his team are conducting a new study testing the before-and-after effects of a structured exercise program on brain function. The study includes patients diagnosed with mild cognitive impairment or early Alzheimer's disease, as well as a healthy control group.

For more information on this ongoing study, visit

J. Carson Smith | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>