Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study shows how common obesity gene contributes to weight gain


Affects a second gene linked to a hair-like appendage on brain cells

Researchers have discovered how a gene commonly linked to obesity—FTO—contributes to weight gain. The study shows that variations in FTO indirectly affect the function of the primary cilium, a little-understood hair-like appendage on brain and other cells. Specific abnormalities of cilium molecules, in turn, increase body weight, in some instances, by affecting the function of receptors for leptin, a hormone that suppresses appetite. The findings, made in mice, suggest that it might be possible to modify obesity through interventions that alter the function of the cilium, according to scientists at Columbia University Medical Center (CUMC).

"If our findings are confirmed, they could explain how common genetic variants in the gene FTO affect human body weight and lead to obesity," said study leader Rudolph L. Leibel, MD, the Christopher J. Murphy Memorial Professor of Diabetes Research, professor of pediatrics and medicine, and co-director of the Naomi Berrie Diabetes Center at CUMC. "The better we can understand the molecular machinery of obesity, the better we will be able to manipulate these mechanisms and help people lose weight."

The study was published on May 6 in the online edition of Cell Metabolism.

... more about:
»CUMC »Diabetes »FTO »Mice »noncoding »obesity »primary »variations »weight

Since 2007, researchers have known that common variants in the fat mass and obesity-associated protein gene, also known as FTO, are strongly associated with increased body weight in adults. But it was not understood how alterations in FTO might contribute to obesity. "Studies have shown that knocking out FTO in mice doesn't necessarily lead to obesity, and not all humans with FTO variants are obese," said Dr. Leibel. "Something else is going on at this location that we were missing."

In experiments with mice, the CUMC team observed that as FTO expression increased or decreased, so did the expression of a nearby gene, RPGRIP1L. RPGRIP1L is known to play a role in regulating the primary cilium. "Aberrations in the cilium have been implicated in rare forms of obesity," said Dr. Leibel. "But it wasn't clear how this structure might be involved in garden-variety obesity."

Dr. Leibel and his colleague, George Stratigopoulos, PhD, associate research scientist, hypothesized that common FTO variations in noncoding regions of the gene do not change its primary function, which is to produce an enzyme that modifies DNA and RNA. Instead, they suspected that FTO variations indirectly affect the expression of RPGRIP1L. "When Dr. Stratigopoulos analyzed the sequence of FTO's intron—its noncoding, or nonprotein-producing, portion—we found that it serves as a binding site for a protein called CUX1," said Dr. Leibel. "CUX1 is a transcription factor that modifies the expression of RPGRIP1L."

Next, Dr. Stratigopoulos set out to determine whether RPGRIP1L plays a role in obesity. He created mice lacking one of their two RPGRIP1L genes, in effect, reducing but not eliminating the gene's function. (Mice that lack both copies of the gene have several serious defects that would obscure the effects on food intake.) Mice with one copy of RPGRIP1L had a higher food intake, gained significantly more weight, and had a higher percentage of body fat than controls.

In a subsequent experiment, the CUMC team found that RPGRIP1L-deficient mice had impaired leptin signaling. "The receptors didn't convene properly on the cell surface around the base of cilium," said Dr. Leibel. "RPGRIP1L appears to play a role in getting leptin receptors to form clusters, where they are more efficient in signaling."

"Overall," said Dr. Leibel, "our findings open a window onto the possible role of the primary cilium in common forms of obesity."

The CUMC team is now conducting studies to learn more about the various components of the FTO- RPGRIP1L pathway, which ciliary proteins are affected by changes in this pathway, and how these proteins mediate actions of leptin receptors.


The paper is titled, "Hypomorphism for RPGRIP1L, a Ciliary Gene Vicinal to the FTO Locus, Causes Increased Adiposity in Mice." The other contributors are Jayne F. Martin Carli (CUMC), Diana R. O'Day (University of Washington, Seattle, WA), Liheng Wang (CUMC), Charles A. LeDuc (CUMC), Patricia Lanzano (CUMC), Wendy K. Chung (CUMC), Michael Rosenbaum (CUMC), Dieter Egli (CUMC), and Daniel A. Doherty (University of Washington).

The authors declare no financial or other conflicts of interests.

The study was supported by grants from the National Institutes of Health (DK52431-15, DK26687-30, NS064077, and DK097399-01).

The Naomi Berrie Diabetes Center at CUMC opened in 1998 to serve the 1.6 million people with diabetes in the New York area, by combining world-class diabetes research and education programs with family-oriented patient care. Founded with support from the Russell Berrie Foundation and other friends, the center is named in honor of the mother of the late Russell Berrie, founder of RUSS™ Toys. The center's more than 100 faculty and students conduct basic and clinical research related to the pathogenesis and treatment of all forms of diabetes and its complications. For more information, visit

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit or

Karin Eskenazi | Eurek Alert!

Further reports about: CUMC Diabetes FTO Mice noncoding obesity primary variations weight

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>