Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows higher healing rate using unique cell-based therapy in chronic venous leg ulcers

03.08.2012
Treating chronic venous leg ulcers with a topical spray containing a unique living human cell formula provides a 52 percent greater likelihood of wound closure than treatment with compression bandages only.

That's the conclusion of a new study conducted in part at the University of North Carolina School of Medicine and published online by The Lancet this week.

The Phase II clinical trial, which investigates the efficacy of HP802-247 from Healthpoint® Biotherapeutics, was designed to determine effectiveness of certain cell concentrations and dosing frequencies of HP802-247, when combined with standard care in treatment of chronic venous leg ulcers.

William Marston, MD, professor of surgery in the UNC School of Medicine and medical director of the UNC Wound Healing Clinic, is an investigator in the study and one of the article authors.

Venous leg ulcers are caused by impaired circulation in the vein system of the legs from blockages or damage. Typically, venous leg ulcers become chronic wounds if, after three months of standard treatment, they fail to heal. Chronic venous leg ulcers appear as open lesions and need specialized medical care. An estimated 1-2 million Americans suffer from venous leg ulcers.

HP802-247 is a living human cell formula consisting of skin cells (keratinocytes and fibroblasts), which release growth factors into the wound on a cellular level for tissue regeneration, along with fibrinogen, which forms a "cellular web" for blood clotting and elasticity. During the study, 228 patients were enrolled at 28 medical centers in the United States, including UNC. Two different cell concentrations and two separate dosing frequencies were tested with standard care, in addition to a control group, over a 12-week period.

Dr. Marston says, "In the past, some chronic venous leg ulcers were treated with skin grafts, which occasionally could break down and also required the patient to heal a partial thickness wound at the skin graft harvest site. During this study, unique living cells were sprayed on the patient's wound, which interacted with the patient's cells for improved wound healing."

"In the study, we determined the best dosing of the fibroblast/keratinocyte preparation that markedly accelerated the rate of healing of the wounds. We are currently preparing a Phase III pivotal trial to start late this year," adds Dr. Marston.

The citation for the Phase II study manuscript is: Kirsner RS, Marston WA, Snyder RJ, Lee TD, Cargill DI, Slade HB. A Multicentre Randomised Dosing Trial of Spray-Applied Cell Therapy With Human Allogeneic Fibroblasts and Keratinocytes for the Treatment of Chronic Venous Leg Ulcers. Lancet 2012; pending.

The study was funded by Healthpoint® Biotherapeutics.

Tom Hughes | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>