Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows: Global warming may indirectly affect our diet; world nourishment at risk of being diminished

23.02.2012
A 28-year comparative study of wild emmer wheat and wild barley populations has revealed that these progenitors of cultivated wheat and barley, which are the best hope for crop improvement, have undergone changes over this period of global warming. The changes present a real concern for their being a continued source of crop improvement.

Wheats and barleys are the staple food for humans and animal feed around the world, and their wild progenitors have undergone genetic changes over the last 28 years that imply a risk for crop improvement and food production, reveals a new study. "The earliness in flowering time and genetic changes that are taking place in these important progenitor wild cereals, most likely due to global warming, can negatively affect the wild progenitors. These changes could thereby indirectly deteriorate food production," says Prof. Eviatar Nevo of the Insitute of Evolution at the University of Haifa who directed the study.


Wheats are the universal cereals of Old World agriculture.The progenitors, wild emmer wheat and wild barley, which originated in the Near East, provide the genetic basis for ameliorating wheat and barley cultivars, which as earlier studies have shown, are themselves under constant genetic erosion and increasing susceptibility to environmental stresses.

The new study set out to examine whether the wild cereal progenitors are undergoing evolutionary changes due to climate change that would impact future food production. It was was headed by Prof. Nevo, along with Dr. Yong-Bi Fu from Canada, and Drs.Beiles, Pavlicek and Tavasi, and Miss Khalifa from the University of Haifa's Institute of Evolution, and recently published in the prestigious scientific journal Proceedings of the National Academy of Sciences (PNAS).

Ten wild emmer wheat and ten wild barley populations from different climates and habitats across Israel were sampled first in 1980 and then again at the same sites in 2008 and grown in a common greenhouse. The results indicated that over the relatively short period of 28 years, all 20 wild cereal populations examined, without exception, showed a dramatic change in flowering time. All populations sampled in 2008 flowered, on average, about 10 days earlier than those sampled in 1980. "These cereal progenitors are adapting their time of flowering to escape the heat," Prof. Nevo explains. The study also found that the genetic diversity of the 2008 sample is for the most part significantly reduced, but some new drought-adapted variants appeared that could be used for crop improvement. "The ongoing global warming in Israel is the only likely factor that could have caused earliness in flowering and genetic turnover across the range of wild cereals in Israel. This indicates that they are under environmental stress which may erode their future survival," says Prof. Nevo. "Multiple effects of the global warming phenomenon have been observed in many species of plants and animals," he adds. "But this study is pioneering in showing its infuence on flowering and genetic changes in wild cereals. These changes threaten the best genetic resource for crop improvement and thereby may damage food production."

A number of species did show positive adaptive changes resulting from global warming, such as earliness in flowering or migration into cooler regions. "But overall," says Prof. Nevo, "the genetic resources of these critical wild cereals are undergoing rapid erosion - and cannot be dismissed as a concern for future generations. Wild emmer wheat is the world's most important genetic resource for wheat improvement, and it is up to us to preserve it. We are utilizing our gene bank at the Institute of Evolution for transforming genes of interest to the crop. However, a much more extensive effort needs to be made to keep the natural populations thriving, by preventing urbanization and global warming from eliminating them".

For more information:
Rachel Feldman
Office: +972-4-8288722
Mobile: +972-54-3933092
Communications and Media Relations
University of Haifa
rfeldman@univ.haifa.ac.il

Rachel Feldman | University of Haifa
Further information:
http://www.haifa.ac.il

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>