Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows: Global warming may indirectly affect our diet; world nourishment at risk of being diminished

23.02.2012
A 28-year comparative study of wild emmer wheat and wild barley populations has revealed that these progenitors of cultivated wheat and barley, which are the best hope for crop improvement, have undergone changes over this period of global warming. The changes present a real concern for their being a continued source of crop improvement.

Wheats and barleys are the staple food for humans and animal feed around the world, and their wild progenitors have undergone genetic changes over the last 28 years that imply a risk for crop improvement and food production, reveals a new study. "The earliness in flowering time and genetic changes that are taking place in these important progenitor wild cereals, most likely due to global warming, can negatively affect the wild progenitors. These changes could thereby indirectly deteriorate food production," says Prof. Eviatar Nevo of the Insitute of Evolution at the University of Haifa who directed the study.


Wheats are the universal cereals of Old World agriculture.The progenitors, wild emmer wheat and wild barley, which originated in the Near East, provide the genetic basis for ameliorating wheat and barley cultivars, which as earlier studies have shown, are themselves under constant genetic erosion and increasing susceptibility to environmental stresses.

The new study set out to examine whether the wild cereal progenitors are undergoing evolutionary changes due to climate change that would impact future food production. It was was headed by Prof. Nevo, along with Dr. Yong-Bi Fu from Canada, and Drs.Beiles, Pavlicek and Tavasi, and Miss Khalifa from the University of Haifa's Institute of Evolution, and recently published in the prestigious scientific journal Proceedings of the National Academy of Sciences (PNAS).

Ten wild emmer wheat and ten wild barley populations from different climates and habitats across Israel were sampled first in 1980 and then again at the same sites in 2008 and grown in a common greenhouse. The results indicated that over the relatively short period of 28 years, all 20 wild cereal populations examined, without exception, showed a dramatic change in flowering time. All populations sampled in 2008 flowered, on average, about 10 days earlier than those sampled in 1980. "These cereal progenitors are adapting their time of flowering to escape the heat," Prof. Nevo explains. The study also found that the genetic diversity of the 2008 sample is for the most part significantly reduced, but some new drought-adapted variants appeared that could be used for crop improvement. "The ongoing global warming in Israel is the only likely factor that could have caused earliness in flowering and genetic turnover across the range of wild cereals in Israel. This indicates that they are under environmental stress which may erode their future survival," says Prof. Nevo. "Multiple effects of the global warming phenomenon have been observed in many species of plants and animals," he adds. "But this study is pioneering in showing its infuence on flowering and genetic changes in wild cereals. These changes threaten the best genetic resource for crop improvement and thereby may damage food production."

A number of species did show positive adaptive changes resulting from global warming, such as earliness in flowering or migration into cooler regions. "But overall," says Prof. Nevo, "the genetic resources of these critical wild cereals are undergoing rapid erosion - and cannot be dismissed as a concern for future generations. Wild emmer wheat is the world's most important genetic resource for wheat improvement, and it is up to us to preserve it. We are utilizing our gene bank at the Institute of Evolution for transforming genes of interest to the crop. However, a much more extensive effort needs to be made to keep the natural populations thriving, by preventing urbanization and global warming from eliminating them".

For more information:
Rachel Feldman
Office: +972-4-8288722
Mobile: +972-54-3933092
Communications and Media Relations
University of Haifa
rfeldman@univ.haifa.ac.il

Rachel Feldman | University of Haifa
Further information:
http://www.haifa.ac.il

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>