Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows gene positions may aid cancer diagnosis

08.12.2009
Certain genes switch their nuclear position in tumor cells, offering a potential new method of diagnosing cancer, say researchers from the National Cancer Institute. The study by Meaburn et al. will be published online December 7, 2009 (www.jcb.org) and in the December 14, 2009 print issue of the Journal of Cell Biology (JCB).

Individual genes preferentially localize to specific points within the nucleus. The reasons for this aren't known, but the positions can be reshuffled during differentiation. Meaburn et al. wondered whether genes might also rearrange during carcinogenesis, when large-scale changes in nuclear morphology occur. The researchers previously identified four genes that shift their location in a 3D culture model of early breast cancer, and now turned their attention to human tissue.

The team analyzed 20 genes and found that most were positioned uniformly in healthy breast tissue from numerous individuals. Eight of these genes consistently relocated in the nuclei of invasive breast cancer cells, including HES5, which had an altered localization in all tumors examined. The researchers were able to distinguish between normal and diseased tissue on the sole basis of these genes' nuclear localization with success rates similar to current clinical tests.

The next step, says lead author Karen Meaburn, will be to repeat the study on a larger number of samples. HES5 is unlikely to be repositioned in all of these, so the authors hope to identify a set of genes that, in combination, can accurately diagnose breast cancer. The approach may be useful for prognosis, too—in vitro studies suggest that gene movements are an early event in cancer development, so gene positions might provide an indication of the cancer's future progress.

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org.

Meaburn, K.J., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200909127.

Rita Sullivan | EurekAlert!
Further information:
http://www.rupress.org

Further reports about: December JCB Meaburn breast cancer cell death synthetic biology

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>