Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows gene positions may aid cancer diagnosis

08.12.2009
Certain genes switch their nuclear position in tumor cells, offering a potential new method of diagnosing cancer, say researchers from the National Cancer Institute. The study by Meaburn et al. will be published online December 7, 2009 (www.jcb.org) and in the December 14, 2009 print issue of the Journal of Cell Biology (JCB).

Individual genes preferentially localize to specific points within the nucleus. The reasons for this aren't known, but the positions can be reshuffled during differentiation. Meaburn et al. wondered whether genes might also rearrange during carcinogenesis, when large-scale changes in nuclear morphology occur. The researchers previously identified four genes that shift their location in a 3D culture model of early breast cancer, and now turned their attention to human tissue.

The team analyzed 20 genes and found that most were positioned uniformly in healthy breast tissue from numerous individuals. Eight of these genes consistently relocated in the nuclei of invasive breast cancer cells, including HES5, which had an altered localization in all tumors examined. The researchers were able to distinguish between normal and diseased tissue on the sole basis of these genes' nuclear localization with success rates similar to current clinical tests.

The next step, says lead author Karen Meaburn, will be to repeat the study on a larger number of samples. HES5 is unlikely to be repositioned in all of these, so the authors hope to identify a set of genes that, in combination, can accurately diagnose breast cancer. The approach may be useful for prognosis, too—in vitro studies suggest that gene movements are an early event in cancer development, so gene positions might provide an indication of the cancer's future progress.

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org.

Meaburn, K.J., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200909127.

Rita Sullivan | EurekAlert!
Further information:
http://www.rupress.org

Further reports about: December JCB Meaburn breast cancer cell death synthetic biology

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>